Imperial College '™ LSDS
LoE\don J 'g

Serverless Confidential Containers:
Challenges and Opportunities

Carlos Segarra

(w/ Tobin Feldman-Fitzthum and Daniele Buono)
Large-Scale Data & Systems (LSDS) Group - Imperial College London
Visiting IBM TJ Watson (Sep'23 — Nov'23)

O o https://carlossegarra.com
H SEAN2 <cs1620@ic.ac.uk>

CoCo Community Meeting — Thursday, December 7th 2023

Agenda

1. Introduction to Confidential Serverless

- Characterising serverless functions: Cold/Warm starts and burstiness
- Problems with existing serverless offerings

2. Background (Will skip most of it):

- Design space for confidential serverless

- Kata and Confidential Containers

3. PoC: Knative on Confidential Containers (Will skip most of it)
4. Evaluation

- Cold-Starts

- Warm-Starts

- Instantiation Throughput

Carlos Segarra - Imperial College London

Introduction: Serverless Functions

A

=
-
D Q

Carlos Segarra - Imperial College London 3

BRI SE A0S

Frontend

..,(,.-A.(.-.v._,,-
U
T

T A VA TR
e T s

..,(,.-A.(.-.v._,,-
U
AT

T A VA TR
e T B s

T
e e

(Functions)

Introduction: Characterizing Serverless Functions

Functions are short-lived!

TN (90% shorter than 10s)
y . / A
100 T /yp_‘.——-““““'""""“ —
1 1 0.90 |
0.75 | .
o ' PR ‘ ' LI W Minimum
g 1 1 1 0 0.50 A — Average
5 © Maximum
w] i ++ LogNormal Fit
8 0.25
£ 0] | ||||I 11l || |l l 0.10 1
=] | 0.00 { i i]] i
1ms 100ms 1s 10s 1m 10m 1h
Time(s)
Figure 7: Distribution of function execution times. Min, avg,
o | _ ‘ and max are separate CDFs, and use independent sorting.
0o 10 20 30 0 10 20 30 W 30
Binned IT (minutes)

Figure 12: Nine normalized IT distributions from real FaaS
workloads over a week. Functions are bu rsty |

[ATC’20] Serverless in the Wild: Characterizing and Optimizing the Serverless Workload at a Large
Cloud Provider

Carlos Segarra - Imperial College London

Introduction: Characterizing Serverless Functions

Only 40% of functions take
less than 1s to start

Yet 80% of functions
execute in < 100 ms !

1.0
— FD ----]PD 0.8
1.0 T L 0.6
/ a
0.8 O o4
1

N /
0.0 L A] N

1l0 I iEIU Ill(I]l‘JO L H‘lH[.'I‘{IJOO
cold start cost (ms)

0.0 vy .Tr.ﬁn'." G O T T, R T IR B
Q e e et srd oot (c) Cold start costs measured

delay (ms) at Huawei Public.

(a) Function Delay, Platform
Delay in Huawei Private.

[S0CC'23] How Does It Function? Characterizing Long-term Trends in Production Serverless W orkloads

Carlos Segarra - Imperial College London

Introduction: Problems in Serverless

Cold-Start: how long does it take
to serve arequest for a new
function?

Warm-Start: how long does it take
to serve subsequent requests?

Instantiation Throughput: how
many (concurrent) invocations of
this function can we serve per
second?

AWS

HTTP

Lambda

<1s 6 50ms T 15k cps

Frontend

Bl &

[ATC’23] On-demand Container Loading in AW S Lambda

Carlos Segarra - Imperial College London

Introduction: Inter-Function Isolation in Serverless

Security

VM-like Isolation is the only
acceptable isolation mechanism

OCl images are the de-facto
mechanism to express functions (and
their dependency closure)

Performance Tricks: micro-
VMs, VM snapshots, and VM
re-use

Performance Usability

Carlos Segarra - Imperial College London

Introduction: More Problems In Serverless!

Inter-function isolationis fine, but not
enough!

Carlos Segarra - Imperial College London

K8S Node

<

Pod

Knative Controller

P 4

Pod

Knative Service A

Register

- Knative Sidecar
Srvc. A
N\

HTTP

Introduction: More Problems In Serverless!

<

Inter-function isolation is fine, but not

enough! K8S Node
We need isolation from the host oo
enVironment to guarantee... = I Knative Service A
; - Knative Controller 1 AD
- Data Confidentiality o Knative Sidecar
- Code Confidentiality |
E . | . Response (Srv. A?)
- Execution Integrity TP (Srv.A)

Confidential Computing

Carlos Segarra - Imperial College London

PoC: Knative on Confidential Containers

kubectl apply

shim-v2

K8S Bare Metal Node

CoCo Configuration:

- Version 0.7.0 (!)

- AMD SEV (aka kata-gemu-sev)

- Onlyone patch to kata-agentrequired

Trusted Node

Pod (cVM) | Pod (cVM)
Kn Kn Kn Kn
Service Sidecar Service Sidecar
Guest Comp. Guest Comp.

Attestation

+

Key Broker Service (KBS)

\4

Key Prov.

Guest Kernel

Guest Kernel

Pod (ns)

Kn Control Plane

Hypervisor (QEMU + KVM)

Carlos Segarra - Imperial College London

Secrets DB

15

PoC: Attestation of Knative on CoCo (AMD SEV)

Container Registry
K8S Bare Metal Node - 9 Secure Boot Protocol
*Service Sidecar)‘f .
_ AMD PSP & Ahead-of-Time
—| Trusted Node (RP)] 1. Generate launch measurement
CRI . 2. Encrypt private container images
KBS : 3. Signall container images
[containerd | -
Launch SHA J
shim-v2 .
|
Kn Kn
= *.Servic)e‘ﬂ‘ Sideca?‘f
SEV Version: ..
OVMF Image: ..
Pod (nS) . Kernel Image: .. :
Kernel CMD: .. :
Kn Control Plane QEMU + KVM . initrd: ..
T T — 7
User :
(Guest Owner)

Carlos Segarra - Imperial College London

PoC: Attestation of Knative on CoCo (AMD SEV)

Container Registry

K8S Bare Metal Node p— Secure Boot Protocol
erV|ce Sidecar)‘f
AMD PSP & Ahead-of-Time
Sx - L
Pod (CVM Trusted Node (RP) : 1. Generate launch measurement
* B . 2. Encrypt private container images
%?T %F KBS : 3. Signall container images
erwce Sidecar ’
Launch SHA J i
: | KBC > 4 :
shim-v2 . Run-time
/- 1. cVM pre-attestation
2. OVMF boot
Guest Kernel 3. Direct measured kernel boot
4. Kata Agent as /initin initrd
v Kernel_sQVMnEtrd sHA 5. Pull encrypted/signed images
Pod (ns) 6. Request key material
7. Validate Image Signature
Kn Control Plane QEMU + KVM 8. Decrypt Layers

Carlos Segarra - Imperial College London

Evaluation

We want to evaluate the feasibility of our PoC according to the three key

metrics we identified for serverless:

1. Cold Start Times

2. Warm Start Times

3. Instantiation Throughput

RC]RUNC

®

kata

®

CONFIDENTIAL
CONTAINERS

6s

7s

?

Carlos Segarra - Imperial College London

1s

2s

?

1 fps

0.5 fps

?

18

Evaluation: Baselines

K8S Bare Metal Node

CRI
shim-v2
—
Pod (ns)

Kn Control Plane

. docker (i.e. runc): no VMs
kata: VMs

coco-nosev: + pull in guest
coco-nosev-ovmf: + OVMF
coco: + SEV

coco-fw: + HW att
coco-fw-sig: + image signature
. coco-fw-sig-enc: + image enc.

N o bk wWwdEO

Knative Service is a simple "Hello World" in Python

Carlos Segarra - Imperial College London

Code, patches, and evaluation scripts are available and
(hopefully) reproducible:
https://github.com/csegarragonz/coco-serverless

19

Evaluation: Cold/Warm Starts

End-to-end latency to start a pod

(cold start="." - warm start="//") Observations:
17.51 mmm pod-scheduling R o R - . _ . 5
m_ kepod-sandbox —~ 1. Why !s YM start u-p 4x slower with SEV*
15.0 - image-pull . - 2. Why isimage pulling 2-3x slower w.r.t docker?
create-container .
B start-container 11 A 3. Why are there no warm starts?
12.5 1

Additional 10 s!

10.0 4 .

Time [s]

NN
=

7.5 A/* l Let us address these questions one by one

5 0 _ LN] L) L N
- - - -
2.5 -
- .
0.0 -
A =4 n] U
& <2 & [B O
¥ 8 & S S
bo G'Q (9(" o cho)
& & &

Baseline

Carlos Segarra - Imperial College London

Evaluation: VM Start-Up In detall

Breakdown of the time to start a CoCo sandbox
(baseline: coco-fw-sig-enc)

kata-agent

start-vm

guest-setup

Q1: Why is VM start-up 3x slower with SEV?

A: It seems that we spend a lot of time in OVMF...

Carlos Segarra - Imperial College London

21

Evaluation: VM Start-Up In detall

VM Start-Up with different SEV configurations
Baseline: coco-fw-sig-enc

Q1: Why is VM start-up 3x slower with SEV?

A: It seems that we spend a lot of time in OVMF...

A: Comparedto a hon-SEV VM (w/ SeaBIOS) we spend:

TA

me [5]

50-100x in virtual FW!

1
10xin start-vm(i/eQEWcmd) S COCO-NOSeV

make-pod-sandbox B ovmf-booting
host-setup B ovmf-dxe
start-vm B ovmf-measure-verify
pre-attestation B guest-kernel
guest-setup [kata-agent
T T T T T
2 3 4 5 6
Time [s]

Carlos Segarra - Imperial College London

22

Evaluation: VM Start-Up in detall (ctd)

Time [s]

Impact of initial VM memory size on start-up time

Q1l: Why is VM start-up 3x slower with SEV?

A: During the start-vm phase,
QEMU provisions all the memory pages
assigned to the guest

2= - —— kata
COCO-NOsev
—— coco
30 1 —— coco-fw
—&— coco-fw-sig
25 1 —#— coco-fw-sig-enc
20 +
15 4
o M d
5 -
D L) I I I I I
248 16 32 o4 128

Initial VM memory size [GEB]

Carlos Segarra - Imperial College London

23

Evaluation: VM Start-Up in detall (ctd)

Memory size: 2 GB

VM Start-Up with different guest memory sizes

Memory size: 128 GB

Bl make-pod-sandbox B ovmf-booting
Bl host-setup Bl ovmf-dxe
1 start-vm Bl ovmf-measure-verify
Bl pre-attestation E guest-kernel
[guest-setup [kata-agent
T T T T T T
10 15 20 25 30 35
Time [5]

Q1: Why is VM start-up 3x slower with SEV?

A: During the start-vm phase, the PSP
provisions all the memory pages
assigned to the guest

Suggested Solution:
- Canwe assign memory pages lazily, off the hot-path?

Time [s]

Carlos Segarra - Imperial College London

Serverless CoCo Task 1: Optimize cVM
provisioning

24

Evaluation: VM Start-Up In detall

Breakdown of the time to start a CoCo sandbox
(baseline: coco-fw-sig-enc)

kata-agent

start-vm

guest-setup

Q1: Why is VM start-up 3x slower with SEV?

A: It seems that we spend a lot of time in OVMF...

Carlos Segarra - Imperial College London

25

Evaluation: VM Start-Up In detall

VM Start-Up with different SEV configurations
Baseline: coco-fw-sig-enc

-=:

Q1: Why is VM start-up 3x slower with SEV?

A: It seems that we spend a lot of time in OVMF...

A: Comparedto a non-SEV VM (w/ OVMF) we spend:

ime [s]
eline: coco-nosev-ovmf

4-5xin virtual FW!

Tme

Q: What is the difference between SEV/non-
SEV OVMF?

A: For SEV, we measure and verify kernel/initrd/cmdline

Carlos Segarra - Imperial College London

26

Evaluation: VM Start-Up In detall

Impact of initrd size on start-up time

204

M

15 4

Time [5]

—$— coco-fw-sig-enc

Q1l: Why is VM start-up 3x slower with SEV?

A: It seems that we spend a lot of time in OVMF...

A: Comparedto a non-SEV VM (w/ OVMF) we spend:

coco-hnosev
O T T T T T T T T T
1 2 3 4 5 ¥ 7 8 9
Multiples of default initrd size (55 MB)

Q: What is the difference between SEV/non-
SEV OVMF?

Carlos Segarra - Imperial College London

A: For SEV, we measure and verify kernel/initrd/cmdline

27

Evaluation: VM Start-Up In detall

Baseline: coco-fw-sig-enc

OVMF Boot Event/S@wdown

20

19

LYY
A

Q1: Why is VM start-up 3x slower with SEV?

A: It seems that we spend a lot of time in OVMF...

A: Comparedto a non-SEV VM (w/ OVMF) we spend:

Blob measurement/verification

happens here

Slowdon [fw-sig-enc/nosev-ovmf]

o = MW FN L = 1] ~l
I L I I | I I

20x initializing drivers!

Carlos Segarra - Imperial College London

This behaviour is unexpected

28

Evaluation: Cold/Warm Starts

End-to-end latency to start a pod
(cold start="." - warm start="//")

17.5

B pod-scheduling —]
[ke-pod-sandb
15.0 ?;Waﬂ;:noullsan " 7... 7...
create-container / /
B start-container © 4 g %" i %’ Y
12.5 .
- LI /' - /I -
78\
10.0 . o . . -
% - % .
?.5_ LI /i.l / :

5.0 +

2.5 1

0.0 -

A) Q
& o & (@
& @ o’ & & &
¥ BN o ¢
& O
& &
Baseline

Observations:

1. Whyis VM start-up 4x slower with SEV?

2. Why isimage pulling 2-3x slower w.r.t docker?
3. Why are there no warm starts?

Problem: Provisioning guest memory pages
introduces 1-2 extra seconds (for 2GB of memory)

Solution: Hot-Plug guest memory pages (or
provision off the hot path)

Problem: OVMF DXE driver initialization introduces
3-4 extra seconds

Carlos Segarra - Imperial College London

Solution: Not clear! Any ideas?

29

Evaluation: VM Start-Up In detall

Q2: Why is image-pulling 2x slower w.r.t Docker?

Breakdown of the time pulling OCl images
(baseline: coco-fw-sig-enc)

L7 app

[sidecar A: containerd's Pullilmage becomes blocking!

handle-single-layer

ha ndle-single-lay{l

P
]
=
o
y
o
o
£
%]
il
S
a

pull-single-layer -

A(ctd): Decrypting image layersis the bottleneck!

decompress +decrypt
pull-layers

decompress

Suggested Solutions:
- Parallelize image pullingwithin pod
- HW-accelerated image decryption

signature-validation |

pull-manifest

pull-manifest
\ signature-validation |

pull-layers

/

: " . . " Serverless CoCo Task 2: Optimize Image Pulling Time

<
|

A°
v

Time pulling app. Image "

. sidecar Image
(encrypted + signed)

(signed)

Carlos Segarra - Imperial College London

Evaluation: VM Start-Up In detall

Q3: Why are there no warm starts?

Breakdown of the time to start a CoCo sandbox Breakdown of the time pulling OCI images
(baseline: coco-fw-sig-enc) (baseline: coco-fw-sig-enc)

A: SEV guests are cryptographically bound to
one "guest owner"

721 app
[sidecar

ovm

pull-single-layer
handle-single-layer
pull-single-layer

kata-agent

A: Cannotrely on the host to mount container images

I
@
=
=
©
£
=
o

pull-layers

guest-setup

A: Cannot easily share (or lazy load) encrypted image layers

Time [s] Time [s]

Suggested Solutions:
- Use the KBS as trusted relying-party in VM pre-warm
- Freeze the Kata Agent until pre-warmed VM is assigned

Serverless CoCo Task 3: Design Secure CoCo sandbox - Encrypted block-based lazy image loading (Nydus)
re-use strategies - Labelimage layers as encrypted or not

Carlos Segarra - Imperial College London

Evaluation: Instantiation Throughput

Starting 16 concurrent
functions takes > 3' !!

Throughput-Latency of Knative Servce Instantiation
200 + . jocl
—b— kata
17597 —¢— coco-nosev
—— coco
150 1 —— coco-fw
—— coco-fw-sig
125 ~ coco-fw-sig-enc
0
£ 100 -
=
75 1
50 A
25 1
—— 1
D T T T T T T T T
2 4 6 a8 10 12 14 16
concurrent Knative services

Carlos Segarra - Imperial College London

32

Evaluation: Instantiation Throughput (ctd.)

515
514

512
511
510
59
58
57
56
55

Knative Service Id

53
52
51
50

Breakdown of the time spent starting 16 services in parallel
(baseline: coco-fw-sig-enc)

5131

A ANW AW AW AW AW A VAV AV AT AT A AN
N N N N NN NN N NN N
AN AN NN N NN NN NN N
NN NSNS NSNS NSNS NSNS NS N/
X X X X X X X X X X X X1
ANV ANV AN ANV AW AN A A A AL
NN NN NN NN N NN

P
NN NIANINININININNA

WK W W W W X W K X K]

FANY AN AN AN AN AN AN AN AN A,

NN N NS N NP NN NN

XX X X X X X X X1
SNIANIANININIANIN NN

SC S ON ON O O N ™

NN I NN N A

T T T T
0 20 40 60 80 100 120 140 160

Time [s]

Bl schedule + make-pod-sandbox
[pull-images + start-containrs
X1 Image registry: ghcr

[T Image registry: local

Q: Why Starting 16 concurrent functions takes > 3'?

A: We are being throttled by the registry!

Suggested Solutions:
- Node-local (and/or cluster-local) layer/block cache
- Actual image re-use (when possible!)

Carlos Segarra - Imperial College London

Serverless CoCo Task 4: Improve Scalability of
CoCo sandbox provisioning

33

Evaluation

We want to evaluate the feasibility of our PoC according to the three key

metrics we identified for serverless:

1. Cold Start Times

2. Warm Start Times

3. Instantiation Throughput

RC]RUNC

®

kata

®

CONFIDENTIAL
CONTAINERS

6s

7s

17.5s

Carlos Segarra - Imperial College London

1s

2s

175 s

1 fps

0.5 fps

~ 0.1 cps

34

FYP CoCo: Summary

Slowdown 1. Cold Start Times 2. Warm Start Times 3. Instantiation Throughput

@

“CONTAINERS 2.5x 8.75x 5x
@ cVM Start-Up Overhead No CoCo pre-warming Registry Throttling
kg’ro 1) Guest Memory Pages 1) SEV Guests <-> owner 1) If all CoCo's pull from the
Provisioning guest, cannot scale w/out

2) OVMEF DXE Initialization pass-through cache

No Image Re-Use

_ 2) Will benefit from
1) Cannot mount images : .
improvements in warm
from host

Guest-Side Image Pulling _ starts
. . 2) Cannot share images
1) Serial (per-ctr) pulling

2) Image Layer Decryption between tenants
= P 3) Cannot lazy load images

Carlos Segarra - Imperial College London

Imperial College '™ LSDS
LoE\don J 'g

Serverless Confidential Containers:
Challenges and Opportunities

Carlos Segarra

(w/ Tobin Feldman-Fitzthum and Daniele Buono)
Large-Scale Data & Systems (LSDS) Group - Imperial College London
Visiting IBM TJ Watson (Sep'23 — Nov'23)

O o https://carlossegarra.com
H SEAN2 <cs1620@ic.ac.uk>

CoCo Community Meeting — Thursday, December 7th 2023

	Slide 1: Serverless Confidential Containers: Challenges and Opportunities
	Slide 2: Agenda
	Slide 3: Introduction: Serverless Functions
	Slide 4: Introduction: Characterizing Serverless Functions
	Slide 5: Introduction: Characterizing Serverless Functions
	Slide 6: Introduction: Problems in Serverless
	Slide 7: Introduction: Inter-Function Isolation in Serverless
	Slide 8: Introduction: More Problems in Serverless!
	Slide 9: Introduction: More Problems in Serverless!
	Slide 15: PoC: Knative on Confidential Containers
	Slide 16: PoC: Attestation of Knative on CoCo (AMD SEV)
	Slide 17: PoC: Attestation of Knative on CoCo (AMD SEV)
	Slide 18: Evaluation
	Slide 19: Evaluation: Baselines
	Slide 20: Evaluation: Cold/Warm Starts
	Slide 21: Evaluation: VM Start-Up in detail
	Slide 22: Evaluation: VM Start-Up in detail
	Slide 23: Evaluation: VM Start-Up in detail (ctd)
	Slide 24: Evaluation: VM Start-Up in detail (ctd)
	Slide 25: Evaluation: VM Start-Up in detail
	Slide 26: Evaluation: VM Start-Up in detail
	Slide 27: Evaluation: VM Start-Up in detail
	Slide 28: Evaluation: VM Start-Up in detail
	Slide 29: Evaluation: Cold/Warm Starts
	Slide 30: Evaluation: VM Start-Up in detail
	Slide 31: Evaluation: VM Start-Up in detail
	Slide 32: Evaluation: Instantiation Throughput
	Slide 33: Evaluation: Instantiation Throughput (ctd.)
	Slide 34: Evaluation
	Slide 35: FYP CoCo: Summary
	Slide 36: Serverless Confidential Containers: Challenges and Opportunities

