Mosaic: Optimizing Cloud Resource Efficiency with
Lazily-Packaged Application Modules

Serhii Ivanenko
serhii.ivanenko@tecnico.ulisboa.pt
INESC-ID, Instituto Superior Técnico,
University of Lisbon
Lisbon, Portugal

Abstract

Modern cloud platforms require users to build their application
code and package it with its run-time dependencies in a hardware-
agnostic package like a container or VM image. Packaging appli-
cations before their deployment on their target hardware prevents
users from leveraging optimized hardware or harnessing opportu-
nities that appear at run-time, like application co-location for faster
communication. This forces developers to preemptively package
the same application for an ever-increasing universe of possible
target architectures, bloating cloud storage and package registries.

We present Mosaic, our vision for a new modular architecture to
build cloud applications that delays the packaging of applications
until they are deployed on their target resources. Applications in
Mosaic are composed of individual Cloud Modules: a language-
and hardware-independent representation for application code
and library dependencies, where each module offers a public API
to communicate with other modules. We discuss a prototype im-
plementation based on the WebAssembly instruction format and
demonstrate its potential benefits to leverage hardware-optimized
libraries to improve performance, bypass communication stacks for
distributed applications that exhibit co-location, and reduce storage
bloat through deduplication and sharing.

CCS Concepts

« Software and its engineering — Runtime environments; «
Computer systems organization — Cloud computing.

Keywords

Cloud Computing, Microservices, Function-as-a-Service, Hardware
Acceleration

ACM Reference Format:

Serhii Ivanenko, Carlos Segarra, and Rodrigo Bruno. 2025. Mosaic: Optimiz-
ing Cloud Resource Efficiency with Lazily-Packaged Application Modules.
In The 3rd Workshop on SErverless Systems, Applications and MEthodologies
(SESAME’ 25), March 30-April 3, 2025, Rotterdam, Netherlands. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3721465.3721864

This work is licensed under a Creative Commons Attribution 4.0 International License.
SESAME’ 25, March 30-April 3, 2025, Rotterdam, Netherlands

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1557-0/2025/03

https://doi.org/10.1145/3721465.3721864

Carlos Segarra
¢s1620@ic.ac.uk
Imperial College London
London, United Kingdom

Rodrigo Bruno
rodrigo.bruno@tecnico.ulisboa.pt
INESC-ID, Instituto Superior Técnico,
University of Lisbon
Lisbon, Portugal

Developer Platform
Building Packaging ‘ Deployment ‘
N 2 >
A <G>
- @ Component A RF’CComponent B
Component A PackA

—>® GPU‘ E‘FPGA‘ i‘:l

Component B Pa‘(;kB Node 1 Node 2 Node 3

1)
7
PP @ P
PackA PackB PackC PackD
Platform Storage

LibX
GPU-opt

% Libx

FPGA-opt

CPU-opt

LibX Repository

Figure 1: Inefficiencies in existing cloud platforms: (1)
hardware-agnostic execution, (2) location-unaware commu-
nication, (3) dependency duplication.

1 Introduction

The development of modern applications can be separated into a
build phase, where users prepare their application code, a packaging
phase, where code gets bundled with its run-time dependencies,
and a deployment phase (Fig. 1). When developing applications for
execution in the cloud, users may not always know the hardware
details of their target deployment platform either because they
are using a managed service [32, 35] or an execution model that
hides away these details like microservices [19] or serverless [26].
Cloud users are, as a consequence, forced to package applications in
hardware-agnostic bundles like container [33] or VM images [39].

To reap the benefits of hardware specialization, users can pack-
age the same application for all supported target platforms, includ-
ing combinations of CPU architectures [34], CPU extensions [38],
compiler optimizations [2], hardware acceleration [36], etc. This
task of specialization becomes increasingly harder as hardware
heterogeneity increases, and applications become more complex
and are packaged with other run-time dependencies [22, 28]. Users
can either aim for the lowest common hardware features, giving
up on performance (Fig. 1, 1), bloat package registries with many
different versions of the same package (Fig. 1, 3), or target a very
specific deployment, reducing the cloud’s flexibility to manage the
application and therefore increasing user’s costs.

This problem is exacerbated when considering the deployment
of a distributed application on cloud resources. Users do not know
what is the best available communication fabric [1, 37] or if there

https://orcid.org/0000-0002-4961-2679
https://orcid.org/0000-0003-3455-7563
https://orcid.org/0000-0003-1578-5149
https://doi.org/10.1145/3721465.3721864
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3721465.3721864

SESAME’ 25, March 30-April 3, 2025, Rotterdam, Netherlands

App Build Block Building Packaging Deployment

Monoliths Developer Developer Developer
Microservices Developer Developer Platform
Functions Developer Developer Platform
Cloud Modules Developer Platform Platform

Table 1: Separation of responsibilities in cloud platforms.

are any kernel bypass mechanisms available (e.g., RDMA), neither
do users know what will be the allocation of instances of the applica-
tion to target resources, preventing co-located instances from using
different communication channels like shared memory. Microser-
vice applications, for example, communicate always using RPCs,
including (de-)serialization and network stack traversals, even if
co-located (Fig. 1, 2).

We observe that the source of these inefficiencies is that cloud
platforms require developers to package their applications (such
as monoliths, microservices, or serverless functions, deployed using
the Infrastructure-as-a-Service, Container-as-a-Service, or Function-
as-a-Service models, respectively) before they are deployed by the
platform (Tab. 1). By instead letting the cloud platform decide how
to package a set of application components, applications can har-
ness the benefits of the best available resources at runtime. Existing
solutions for run-time (re-)configuration, however, either require
adopting a specific programming language [58] or programming
framework [44], re-writing application code [63], or are specific to
particular domains [3, 8, 9].

In this paper, we propose Mosaic, our vision for a new modu-
lar architecture for cloud applications. Applications in Mosaic are
made up of independent Cloud Modules: a language- and hardware-
agnostic intermediate representation with a narrow system inter-
face. Each module has a public API to communicate with other
modules. The target runtime environment can then compose mod-
ules into an application, optimizing for the available hardware
resources, and provide an implementation for the system interface.
Mosaic is not confined to the existing cloud service models and has
the potential to improve them significantly or even pave the way
to a new service offering.

Our Mosaic prototype uses WebAssembly (Wasm) [57] as an
intermediate representation, and we plan on leveraging Wasm’s
system interface (WASI) [31], and Wasm’s component model for
the module’s interface [29]. We believe Wasm’s language- and
hardware-independence, together with its mature runtime [40,
41] and compilation environment, provides the necessary tools
to achieve our goals transparently to application code, but we also
envision research challenges (§5).

Our early experiments to quantify the performance gap that
could be covered by Mosaic demonstrate that application perfor-
mance can vary significantly by selecting modules optimized for
specific hardware extensions. In particular, running AVX-enabled
TensorFlow versus off-the-shelf TensorFlow yields a score improve-
ment of 2.40x and 2.67X for ML inference and training (respec-
tively) when running the Al benchmark suite [4] (§2.1). Co-located
microservices can improve throughput by 12-35% (§2.2), and depen-
dency de-duplication can vastly reduce storage bloat (§2.3).

Serhii Ivanenko, Carlos Segarra, and Rodrigo Bruno

©

7z
= 14.32 @7 Training EEW Inference
o 7z
O 61
26 7
5 7z
g | 1
7
sS4 i ’
= 11 [|
5 /////
B 21
2 4 |
[%2] 7
0 ’ ad 4
o © +* * A *
YLy MR NS IR YIRS FS
§S§§ g oo 983 G £ 3% £ 5
2.993%5\’0%0&', wS Y vy S5
55 Fa NN X 94 gV o g F 2
L 9 9 YT < PSR o QL & &
s8¢ 558 L5 3 T F L
IS 17 s :
£S5 §& 9 g& = IS
SRS & 5 S
~ o

Figure 2: ML Training and Inference speedup comparing
TensorFlow installed with pip and an optimized build. The
red line delineates the improvement threshold.

2 Inefficiencies in Modern Cloud Platforms

As modern cloud platforms become more complex and heteroge-
neous, developers have less control and visibility over the underly-
ing hardware and deployment location. While this tendency allows
developers to focus on application logic and facilitates scalability,
it also forces developers to build and package their applications
conservatively, without being able to take advantage of local hard-
ware accelerators or bypass network if application components are
co-located. Moreover, since cloud platforms require developers to
package applications before being uploaded to the platform, cloud
storage easily becomes bloated with many copies of popular appli-
cation libraries and frameworks (NumPy [22] and PyTorch [24] as
examples of widely used Python libraries) included many differ-
ent container and VM images. In this section, we experimentally
quantify each of these inefficiencies.

2.1 Hardware-agnostic Execution

Some types of computationally intensive workloads, such as ma-
chine learning, data analytics, cryptography, and computer graph-
ics, can benefit from special high-performance hardware units like
Al and/or cryptographic co-processors, SIMD support such as AVX,
or GPU and FPGA accelerators. As a result, most popular libraries
and frameworks that support such workloads offer versions spe-
cialized to specific hardware accelerators, in addition to general-
purpose builds that run on most commodity hardware. Examples
include TensorFlow [28], PyTorch [25], CuPy [14], OpenCV [23].
In the presence of hardware acceleration, it is desirable to use
versions of code that are specific to that hardware, as it may improve
performance compared to versions targeting generic commodity
hardware. To measure this performance impact, we run an Al bench-
mark suite [4] composed of a total of 19 Machine Learning and
Computer Vision benchmarks. The benchmarks in the suite use
TensorFlow [28] and report the inference and training times. The
experiment uses a TensorFlow build installed via Python’s package
manager pip (Unopt.), and a TensorFlow build optimized for Intel

Mosaic: Optimizing Cloud Resource Efficiency with Lazily-Packaged Application Modules

1000
I Read Network
£ 500 —— Local
>
(%}
=4
2 0
;: 1000 100 200 300 400 500 600
© Write
(=)}
2 500
0
0 50 100 150 200 250 300
RPS

Figure 3: Social Network end-to-end latency using local and
network communication between services.

CPUs with AVX support! (Opt.). The experiment was executed on
a local cluster machine running Ubuntu 22.04.4 LTS (Linux kernel
5.15.0-97-generic) equipped with 2x Intel Xeon Gold 5320 CPU @
2.2GHz and 128GB of DDR4 DRAM. Results in Fig. 2 reveal that an
optimized build of TensorFlow improves inference by 2.40x and
training by 2.67X compared to an unoptimized build on the same
exact hardware. It is also interesting to note that while most bench-
marks benefit from hardware acceleration, some do not, and some
may even suffer performance degradation when accelerated. This
experiment demonstrates that anticipating which type of hardware
to use is nontrivial as it may depend on the specific workload.

Unawareness concerning the deployment hardware and the need
for packaging distributed applications before uploading to the cloud
storage prevent developers from taking full advantage of hardware
accelerators, even if such specialized hardware is installed in the ac-
tual execution environment. Developers are forced to always target
generic hardware so that their application would work regardless
of the platform’s deployment decision. This is a missed opportu-
nity to optimize cloud applications that perform computationally
intensive workloads. The opposite, allowing developers to target a
specific type of hardware, is also non-optimal in terms of resource
utilization as it would constrain the platform on which hardware
it can use to deploy the application. In sum, statically bundling
applications with a specific implementation that targets generic or
specialized hardware fails to offer both application performance
and resource efficiency.

2.2 Locality-unaware Communication

Distributed application architectures such as microservices have
become popular for building and deploying distributed applications.
With this approach, applications are built as sets of individual and
loosely coupled logic components, called services, which commu-
nicate with each other through APIs. To facilitate communication,
microservice frameworks employ various Remote Procedure Call
(RPC) mechanisms, such as Apache Thrift [7] or gRPC [17].
However, developers cannot make any assumptions regarding
the deployment location of each service since they build and pack-
age services before the platform takes deployment decisions. This
affects the way services communicate with each other: all inter-
service communication should take place over the network to ac-
commodate all deployment scenarios. Consequently, even if two

1We used the following Docker image: intel/intel-optimized-tensorflow-avx512.

SESAME’ 25, March 30-April 3, 2025, Rotterdam, Netherlands

Benchmark App (KBs) Deps. (%)
dynamic-html (Python) 3.02 976.47 (99)
uploader (Python) 2.86 0.0 (0)
thumbnailer (Python) 4.08 7011.87 (99)
dynamic-html (JS) 3.07 143.66 (97)
uploader (JS) 2.63 3801.98 (99)
thumbnailer (JS) 2.58 23298.43 (99)
video-processing (Python) 17.38 86839.41 (99)
compression (Python) 3.60 0.00 (0)
image-recognition (Python) 40.22 247749.31 (99)
graph-pagerank (Python) 2.39 9291.69 (99)
graph-mst (Python) 241 9291.69 (99)
graph-bfs (Python) 2.39 9291.69 (99)
dna-visualisation (Python) 3.14 177362.42 (99)
SocialNetwork (C++) 1454.26 527.54 (26)
MediaMicroservices (C++) 1302.35 527.88 (28)
HotelReservation (Go) 6.73 4844.0 (99)

Table 2: Size comparison of applications and their dependen-
cies from SeBS [50] and DeathStarBench [55].

services happen to be deployed on a single compute instance, they
still require serialization and go through the network stack.

Communicating over the network implies making system calls
to open a socket, establishing a connection, and transferring data
through this connection. If services use secure channels for com-
munication, then data encryption is included in this sequence. Ad-
ditionally, network communication can also entail the expensive
process of data serialization. These steps contribute to the end-to-
end latency of the request, which could be significantly reduced if
the co-located components used local communication.

Fig. 3 shows the end-to-end latency (99th percentile) and through-
put of read and write workloads in the Social Network microservice
application from DeathStarBench [55] for two modes of commu-
nication between the services: network and local calls. For the
network calls, services use Apache Thrift [7]; local calls are direct
method invocations, representing the theoretical upper bound of
performance by bypassing (de-)serialization and the TCP stack. For
both modes, all components of Social Network run in the same
machine, but in the network mode, each service executes in its
container, whereas in the local mode, all services are merged in a
single process running in a container. Results taken in the same
evaluation environment as in the previous experiment demonstrate
that for read and write workloads, the local communication mode
can sustain 12% and 35% (respectively) higher request rate without
degrading the tail latency compared to network communication.

2.3 Application Dependencies Duplication

Application dependencies (commonly referred to as libraries) are
essential to abstract all sorts of tasks, such as media processing,
cryptography, data analysis, etc. Such dependencies are commonly
distributed at build-time through repositories or package managers,
such as Apache Maven [6], NuGet [21], npm [20], etc.

SESAME’ 25, March 30-April 3, 2025, Rotterdam, Netherlands

In order to use external libraries in a cloud platform setting,
applications are packaged together with libraries in a single ap-
plication package after building the application. However, these
dependencies can take up a significant portion of the overall pack-
age size. Tab. 2 compares the size of the application code with the
size of the dependencies. The applications used in this experiment
are the benchmarks from the SeBS [50] and DeathStarBench [55]
benchmark suites. This experiment shows that dependencies con-
stitute more than 99% of the overall application binary size for the
majority of benchmarks. Dependencies dominate the application
package size, thus imposing storage and network overhead. Be-
sides, booting such an application involves loading and initializing
all dependencies during instantiation, contributing to startup la-
tency. Deduplicating common dependencies is possible; however, it
comes at a cost of extra computational effort to run deduplication
algorithms [47].

Takeaway. The current separation of concerns between develop-
ers and cloud platforms significantly limits application performance
and resource efficiency. Developers are oblivious to the platform’s
hardware availability and deployment decisions, thus unable to
avoid unnecessary inefficiencies by using hardware-specific code
or optimal communication mechanisms. On the other hand, plat-
forms that allow developers to target specific hardware have limited
deployment options for already packaged applications and, there-
fore unable to optimize resource utilization.

3 Existing Cloud Platform Optimizations

Dynamically optimizing performance and resource consumption
is a hot research topic in both academia and industry. Existing
approaches can be divided into several categories:

Cloud Services such as Machine Learning-as-a-Service [78] or
other Platform-as-a-Service offerings assume the role of packaging
applications for resource efficiency. Various systems [3, 8, 9, 42, 51,
70] offer machine learning and artificial intelligence abstractions.
However, these services are specific to their domains and require
applications to be re-architected according to the service interface
and execution model. In exchange, platforms have control over
the code packaging of the applications. Similarly, data analytics
platforms such as Dryad [59], Hadoop [52], and Spark [81] are
solutions designed for parallel large-scale data-intensive distributed
workloads which can perform various optimizations to improve
data locality, thus reducing latency. In contrast, our proposal aims
at enabling optimizations for general-purpose applications without
requiring applications to be rewritten against a specific interface.

Application-level Programming Models and Frameworks
have also received significant attention. Nu [71] proposes the no-
tion of elastic logical processes and proclets to fully utilize fungible
resources. Dandelion [63] leverages explicit distinction computa-
tion and I/O to optimize scheduling and employ lightweight secure
execution sandboxes. Ghemawat et al. [56] proposes building appli-
cations as logical monoliths according to a specific programming
model so that the runtime can dynamically make efficient deploy-
ments. Blueprint [44] also proposes its programming model to
optimize communication between microservices. However, Blue-
print does not automatically reconfigure communication protocols

Serhii Ivanenko, Carlos Segarra, and Rodrigo Bruno

based on the application workload. Orleans [48] proposes an actor-
based framework that abstracts deployment details from developers.
Jolie [67] and Silvera [74] are full domain-specific programming
languages for service-oriented or microservices applications. Com-
pared to our vision, however, these works imply a complete or
partial re-engineering of existing applications and their dependen-
cies, which is not always possible, particularly if the application
relies on external libraries such as ML frameworks.

Optimized Runtime Systems have also been used to take ad-
vantage of locality in distributed applications. CoFaaS [45] proposes
consolidating serverless functions on the same compute node and
avoiding the network layer by transparently transforming RPC in-
vocations to local calls. Faasm [73] and Nightcore [60] facilitate the
locality of related functions to benefit from local communication.
Palette [43] offers a user-guided mechanism for promoting data
locality in serverless. While these approaches focus on optimizing
communication between components, they ignore other inefficient
aspects of application execution in the cloud, such as the possibility
of hardware-accelerated execution and dependency deduplication.

Just-In-Time (JIT) Compilation is a promising approach to
dynamically optimize the application code for the locally available
hardware. For example, TornadoVM [53] offers multiple compi-
lation backends that target specific hardware accelerators, allow-
ing Java programs to benefit from hardware-accelerated execution.
However, JIT compilation also incurs significant costs in terms
of profiling and compilation, which can become prohibitive for
latency-sensitive applications. Besides, microservice and serverless
workloads tend to be transient and short-lived [61, 72, 77], and their
JIT-compiled code caches may not persist across invocations. This
leads to repeated profiling and JIT compilation of the same code,
leading to unpredictable latency overheads [49, 62].

Storage deduplication is a technique aimed at mitigating stor-
age overhead by sharing common components, such as image layers
or dependencies, across packaged applications. Brooker et al. [47],
SOCK [68], Pagurus [65], and RainbowCake [80] feature strategies
to deduplicate container image layers, allowing them to achieve
reduced storage overhead and faster cold starts. However, existing
strategies either apply coarse-grained deduplication [65, 68, 80]
(container layer-level deduplication) or need to run expensive dedu-
plication mechanisms to duplicate at the block level [47].

4 Mosaic Design and Architecture

We envision a new cloud environment where developers build ap-
plications into a set of Cloud Modules, which are then packaged
and deployed by a cloud platform (see Fig. 4, notice that the cloud
abstraction shifted to include packaging), offering transparent appli-
cation acceleration to developers and the opportunity to optimize
resource efficiency to platforms. Standalone modules export inter-
faces that can be used to interact with other modules. By exposing
modules and their interaction directly to the cloud environment,
Mosaic allows cloud platforms to intercept and offer modules that
better suit the locally available hardware, use the most efficient
communication medium for inter-module interaction, and dedupli-
cate application storage. The rest of this section further elaborates
on this vision.

Mosaic: Optimizing Cloud Resource Efficiency with Lazily-Packaged Application Modules

Developer Platform

Building ‘ Packaging ‘ ‘ Deployment ‘

<@_—>
Local Call

Cloud Module A Cloud Module B

PackA
</>
D

Cloud Module A GPU‘ ”@FPGA‘

A PackB Node 1 Node 2 Node 3
il T\
Cloud Module B N N \@ N
ks T g LibX LibX

ModA ModB GPU-opt FPGA-opt CPU-opt
Module Registry

H _CF’U‘

Figure 4: Application deployed on Mosaic. Developers push
Cloud Modules to the Module Registry. The platform pack-
ages the application dynamically, selecting specialized ver-
sions of modules from the registry and connecting them with
appropriate communication mechanisms based on the actual
deployment scenario.

4.1 Cloud Modules

In Mosaic, applications are composed of a set of Cloud Modules.
Modules are atomic deployable units that are loaded on demand
from the Module Registry (§4.3) based on the available hardware.
Deciding which hardware to use is an on-going research challenge
discussed in §5. Module lazy loading also allows Mosaic to dynami-
cally choose an appropriate communication mechanism (local or
remote) between modules (remote communication can also be ac-
celerated based on local network devices). Modules can contain a
mix of code and data. Each module is given access to a private copy
of loaded dependency modules, such as libraries. We envision that
co-located dependencies could be deduplicated in memory through
Copy-on-Write.

Mosaic does not require developers to re-architect existing ap-
plication components, such as microservices, serverless functions,
libraries, or even static files, using a new programming model or
framework. Instead, modules can wrap the already existing artifacts
that applications produce during compilation. For instance, applica-
tion binaries and library dependencies are treated as independent
modules in Mosaic. Moreover, any file that is part of the deployment
package (for example, container image) that developers upload to a
cloud platform is now also handled as an independent module.

4.2 Module System Interface

Cloud Modules may need to interact with each other or with the
external environment to, for example, access cloud storage. We
start from the insight that most cloud applications need a system
interface to communicate or to download input data and upload
output data. The execution environment offered in most cloud plat-
forms (even in serverless platforms such as Amazon Lambda) is
unnecessarily complex, allowing applications to access the entire
POSIX interface and, as a consequence, too expensive (long initial-
ization time and high memory footprint) as a fully isolated VM

SESAME’ 25, March 30-April 3, 2025, Rotterdam, Netherlands

or container is necessary to support such a wide and powerful
interface. Moreover, existing interfaces also expose system-level
information directly to applications (e.g., applications can directly
access network devices and file descriptors), which hampers the
adoption of dynamic environments such as Mosaic.

We therefore adopt a new system interface (more details in §5)
with two main design features. First, it is orthogonal to the sandbox-
ing mechanism, i.e., it should support modules being deployed on
different VMs, containers, or even in the same process. In-process
sandboxing is particularly important to achieve high module den-
sity (low memory footprint), high elasticity (low initialization time),
and to support fast inter-module communication. Second, it exposes
an opaque interface, which does not disclose low-level system in-
formation, thus promoting state-of-the-art optimizations such as
application migration and checkpoint/restore.

Mosaic’s system interface also mediates inter-module communi-
cation. Similarly to how shared libraries expose functions, modules
export a public module interface that can be used to interact with
other modules. Application code calling into a library is now exe-
cutes as a module calling another module through a handle obtained
from Mosaic’s system interface. Modules can also communicate
over sockets (e.g., two microservices). The callee module can either
be local or remote, and the handle hides the communication pro-
tocol. For data-only modules (for example, files), Mosaic exposes
a file-based module interface that supports normal file operations
(reading, writing, etc). Interactions with external components, such
as communication with a persistent blob storage or a database, are
handled as usual — through conventional network connections.
Optimizing module communication is an active research challenge
further detailed in §5.

On top of that, we envision the concept of streams for Cloud
Modules to communicate with each other. Modules use the system
interface to open a stream to an external service. After the stream
is opened by the runtime, a handle is returned to the application
code and can be used to read/write data from/to it. Streams com-
pletely hide the underlying communication mechanism and do not
expose system-level information about the origin and destination.
Such design, however, requires existing applications to be adapted
to streams. While not being part of the current Mosaic’s design,
streams can become a new communication abstraction specifically
designed for highly dynamic cloud environments.

4.3 Module Registry

The registry operates similarly to VM disk or container image reg-
istries in the sense that developers can upload artifacts that are later
deployed by the cloud platform. The main difference compared to
VM disks and container images — that are opaque to the platform
— is that Cloud Modules export a public interface that platforms
can identify. In Mosaic, platforms can deduplicate modules that
expose the same interface by design. For example, the registry may
have a single version of NumPy [22] (a popular dependency in
Python applications), avoiding many duplicated versions packaged
for each application. Furthermore, platforms can also offer special-
ized versions of modules optimized for locally available hardware.
For example, platforms can offer Machine Learning modules (for

SESAME’ 25, March 30-April 3, 2025, Rotterdam, Netherlands

example, PyTorch [24] or TensorFlow [28]) built specifically for lo-
cally available accelerators or for specialized CPU versions available
on the data center.

This separation of concerns between developers and platforms
also improves resource utilization as platforms can dynamically de-
cide which hardware to use not only based on performance but also
on hardware availability. We further envision that this separation
could open the door to new optimizations on popular packages (for
example, Python’s NumPy) and foster the adoption of new accel-
erators as platforms do not need to rely on developers to package
applications against recent software optimized for recent hardware.

Finally, lazily loading and deduplicating modules in the registry
also reduces the infrastructure burden to deploy applications, which
often entails the repeated distribution of the same file over and over
for different applications or instances of the same application.

5 Early Prototype and Research Challenges

We are developing an early prototype of the platform and runtime
that implements our vision of Mosaic. The runtime is written in the
Rust programming language and uses WebAssembly [57] (Wasm for
short) as a binary code format for application modules. Wasm is a
popular binary code format designed around three main principles:
portability, security, and performance. Moreover, the Wasm com-
munity has been standardizing inter-module interfaces and system
interfaces, which greatly fit the goals of this project. In particular,
the WebAssembly System Interface [31] (WASI) has been recently
proposed as a secure standard system interface for Wasm modules.
The Wasm Component Model [29] has also recently been proposed
to offer a standardized format to describe module dependencies and
interfaces. Both the component model and WASI are being used
as building blocks for designing cloud modules interface and the
runtime engine.

Wasm is also a suitable compilation target for cloud applications
thanks to its language- and platform-independence. Wasm is a nar-
row software stack waste, allowing applications written in multiple
languages to use it as a common compilation target, thus requiring
no developer intervention to support Mosaic. Besides, Wasm is a
community-driven ecosystem that is gaining increasing popularity.
There is great momentum in both academia and industry to improve
Wasm support not only for Rust, C/C++, and Go [45, 54] but also
for managed languages such as Java, Python, and JavaScript [5, 10—
12, 18, 27, 73]. Companies such as Cloudflare [13], Fastly [15], and
Fermyon [16] already support uploading Wasm code for execution
in their cloud.

While Wasm offers unique support for Mosaic’s portability and
module sandboxing, it does not address several system aspects
related to infrastructure management. We dedicate this section to
discussing the open challenges we uncovered while building our
early prototype.

Quantifying Module Efficiency on Different Hardware. De-
ciding where a module should be deployed requires the platform to
automatically estimate which hardware will lead to higher resource
efficiency. Traditionally, developers either rent specific cloud hard-
ware to run an application or leave this decision to the platform,
which in turn may deploy user code on any available commodity
hardware. In sum, existing platforms focus primarily on optimizing

Serhii Ivanenko, Carlos Segarra, and Rodrigo Bruno

resource usage. In Mosaic, however, platforms may be able to use
optimized modules for specific hardware. This new dimension turns
the resource usage optimization problem into a resource efficiency
optimization one, a more complex optimization problem that re-
quires estimating the efficiency of a particular module on specific
hardware. Optimizing resource efficiency requires capturing the
trade-off between performance and resource usage, as the goal
of the platform is to improve application performance using the
least amount of resources. This is an interesting but challenging
research question as the efficiency of a module depends not only
on the hardware where it runs but also on the workload intensity.
For example, multiplying small matrices may yield very low re-
source efficiency when deployed on a large GPU. Existing work
on resource provisioning and scheduling has focused mostly on
vertical and horizontal scaling and has not investigated the impact
of different hardware [46, 76].

Minimizing Module Communication Overheads. Modules
may communicate with each other through existing networking
primitives (e.g., sockets). Even if two modules are co-located, the ap-
plication code still serializes data and ships it to the network stack.
Bypassing the network stack is possible by modifying Mosaic’s
runtime WASI implementation to intercept the data-path between
two co-located modules. For example, Mosaic may intercept a write
to a socket and cache the data in memory until a read is requested.
Bypassing serialization is, however, more challenging as it happens
within the application code before it calls into networking primi-
tives. Previous works describe how to minimize the overhead of se-
rialization, particularly in managed languages [66, 75] or proposed
frameworks and Domain-Specific Languages that developers would
have to use to bypass serialization [44, 56, 58, 63]. In this work,
we are investigating an alternative that does not require developer
effort to completely bypass the serialization overhead. Building on
the fact that Mosaic’s applications are compiled into Wasm, the goal
is to statically analyze the application code around the data commu-
nication sinks. If communication is local and serialization is to be
avoided, the runtime should provide a specialized communication
handle that directly invokes another module by copying data di-
rectly from the sending module and bypassing the application code
that performs serialization. This optimization will be conducted
at module loading time and will involve the transformation of the
application code to bypass serialization. This optimization is made
possible by Just-In-Time instrumenting Wasm code to fuse a data
source to a data sink.

WebAssembly Acceleration Support. Mosaic is designed so
that developers submit Wasm modules into the platform registry.
Wasm modules are portable and can be executed on any hardware
that supports a Wasm runtime. Platforms may also provide special-
ized module implementations that optimize for specific hardware
but that still respect the module interface (for example, platforms
may have special implementations of math libraries). Wasm mod-
ules can be Ahead-of-Time (AOT) compiled to a specific hardware
architecture or Just-In-Time (JIT) compiled at run-time. This deci-
sion is left to the cloud platform and is invisible to users. We are
currently investigating a non-trivial trade-off between keeping a
large pool of AOT compiled modules for each specific hardware plat-
form or paying the performance penalty of JIT compiling modules
on the critical path. Finally, it is important to note that developer

Mosaic: Optimizing Cloud Resource Efficiency with Lazily-Packaged Application Modules

code that relies on very specific hardware features and cannot
be compiled into Wasm will naturally not be supported in Mosaic.
Such applications will not be able to benefit from delayed packaging
since they only target a specific hardware architecture.

Handling Security and Trust. Wasm offers a robust Software-
Fault Isolation (SFI) security model combining a linear memory with
control-flow integrity (CFI) enforced through checks at build and
run-time [30]. However, Wasm’s isolation guarantees can fail due to
software bugs in the compiler and runtime [64]. We intend to com-
bine Wasm’s SFI with hardware-based memory isolation techniques
such as Intel Memory Protection Keys [69] and hardware-base con-
trol flow integrity such as Intel CET [79].

Besides inter-module isolation, trust is also a crucial issue as
developers now rely on the platform to select modules to be de-
ployed together with developer code. Furthermore, modules may
be packaged with specialized modules whose source code may not
even be available. In these scenarios, developers need a mechanism
to ensure that their data is secure and that the computation is cor-
rect. We plan to investigate ways to attestate modules and to allow
developers to opt out of modules that cannot be attested.

6 Conclusion

This paper proposes Mosaic, an execution environment in which
developers delegate packaging and deployment to the platform,
allowing it to optimize application performance and hardware uti-
lization. We elaborate on this vision and discuss a number of active
research challenges that we are pursuing to implement Mosaic.

Acknowledgments

This work was supported by national funds through Fundagéo para
a Ciéncia e a Tecnologia (FCT) with reference UIDB/50021/2020 and
through the FCT scholarship 2024.01902.BD, and partially funded
by the European Union through the Horizon Europe projects Cloud-
Stars (101086248) and CloudSkin (101092646). Serhii’s research was
also supported in part by grants from Oracle.

References

[1] 1981. RFC 793 - Transmission Control Protocol. https://datatracker.ietf.org/doc/
html/rfc793. Accessed: 2025-02-07.

[2] 2021. Intel march. https://www.intel.com/content/www/us/en/docs/cpp-
compiler/developer-guide-reference/2021-8/march.html. ~ Accessed: 2025-02-
07.

[3] 2024. AI and Machine Learning at Google Cloud. https://cloud.google.com/
solutions/ai. Accessed: 2025-02-07.

[4] 2024. Al Benchmark. https://ai-benchmark.com. Accessed: 2025-02-07.

] 2024. Announcing py2wasm: A Python to Wasm compiler. https://wasmer.io/
posts/py2wasm-a-python-to-wasm-compiler. Accessed: 2025-02-07.
[6] 2024. Apache Maven Project. https://maven.apache.org. Accessed: 2025-02-07.
[7] 2024. Apache Thrift. https://thrift.apache.org. Accessed: 2025-02-07.
[8] 2024. AWS Machine Learning. https://aws.amazon.com/ai/machine-learning.
Accessed: 2025-02-07.
[9] 2024. Azure Machine Learning. https://learn.microsoft.com/en-us/azure/
machine-learning. Accessed: 2025-02-07.
[10] 2024. Bringing Python to Workers using Pyodide and WebAssembly. https:
//blog.cloudflare.com/python-workers. Accessed: 2025-02-07.
[11] 2024. Bytecoder. https://mirkosertic.github.io/Bytecoder. Accessed: 2025-02-07.
[12] 2024. Cheerp]. https://cheerpj.com. Accessed: 2025-02-07.
[13] 2024. Cloudflare: Connect, protect and build everywhere. https://www.cloudflare.
com. Accessed: 2025-02-07.

[14] 2024. CuPy. https://cupy.dev. Accessed: 2025-02-07.

[15] 2024. Fastly: Powering the best of the internet. https://www.fastly.com. Accessed:
2025-02-07.

[16] 2024. Fermyon. https://www.fermyon.com. Accessed: 2025-02-07.

N
furg

~
o)

[43

(44

[45

[46]

[47

=
&

[49

SESAME’ 25, March 30-April 3, 2025, Rotterdam, Netherlands

2024. gRPC. https://grpc.io. Accessed: 2025-02-07.

2024. Making JavaScript run fast on WebAssembly. https://bytecodealliance.org/
articles/making-javascript-run-fast-on-webassembly. Accessed: 2025-02-07.
2024. Microservice Architecture. https://microservices.io. Accessed: 2025-02-07.
2024. npm. https://www.npmjs.com. Accessed: 2025-02-07.

2024. NuGet Gallery. https://www.nuget.org. Accessed: 2025-02-07.

2024. NumPy. https://numpy.org. Accessed: 2025-02-07.

2024. OpenCV CUDA. https://opencv.org/platforms/cuda. Accessed: 2025-02-07.
2024. PyTorch. https://pytorch.org. Accessed: 2025-02-07.

2024. PyTorch Hardware-Accelerated Video Decoding and Encoding. https:
//pytorch.org/audio/0.13.1/hw_acceleration_tutorial.html. Accessed: 2025-02-07.
2024. Serverless Architecture Overview. https://www.datadoghq.com/
knowledge-center/serverless-architecture. Accessed: 2025-02-07.

2024. TeaVM. https://teavm.org. Accessed: 2025-02-07.

2024. TensorFlow. https://www.tensorflow.org. Accessed: 2025-02-07.

2024. WebAssembly Component Model design and specification. https://github.
com/WebAssembly/component-model. Accessed: 2025-02-07.

2024. WebAssembly Security. https://webassembly.org/docs/security. Accessed:
2025-02-07.

2024. WebAssembly System Interface. https://wasi.dev. Accessed: 2025-02-07.
2025. Azure Kubernetes Service. https://azure.microsoft.com/en-us/products/
kubernetes-service. Accessed: 2025-02-07.

2025. Docker. https://www.docker.com. Accessed: 2025-02-07.

2025. Docker Multi-arch build and images. https://www.docker.com/blog/multi-
arch-build-and-images-the-simple-way. Accessed: 2025-02-07.

2025. Google Kubernetes Engine. https://cloud.google.com/kubernetes-engine.
Accessed: 2025-02-07.

2025. NVIDIA CUDA-X Libraries. https://developer.nvidia.com/gpu-accelerated-
libraries. Accessed: 2025-02-07.

2025. The NVIDIA Quantum InfiniBand Platform. https://www.nvidia.com/en-
us/networking/products/infiniband. Accessed: 2025-02-07.

2025. OpenSSL x86_64 processor capabilities vector. https://docs.openssl.org/3.
4/man3/OPENSSL _ia32cap. Accessed: 2025-02-07.

2025. QEMU. https://www.qemu.org. Accessed: 2025-02-07.

2025. Wasmtime. https://wasmtime.dev. Accessed: 2025-02-07.

2025. WebAssembly Micro Runtime. https://bytecodealliance.github.io/wamr.dev.
Accessed: 2025-02-07.

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: a system for large-scale machine
learning. In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation (Savannah, GA, USA) (OSDI'16). USENIX Association,
USA, 265—-283.

Mania Abdi, Samuel Ginzburg, Xiayue Charles Lin, Jose Faleiro, Gohar Irfan
Chaudhry, Inigo Goiri, Ricardo Bianchini, Daniel S Berger, and Rodrigo Fon-
seca. 2023. Palette Load Balancing: Locality Hints for Serverless Functions. In
Proceedings of the Eighteenth European Conference on Computer Systems (Rome,
Italy) (EuroSys "23). Association for Computing Machinery, New York, NY, USA,
365-380. https://doi.org/10.1145/3552326.3567496

Vaastav Anand, Deepak Garg, Antoine Kaufmann, and Jonathan Mace. 2023.
Blueprint: A Toolchain for Highly-Reconfigurable Microservice Applications.
In Proceedings of the 29th Symposium on Operating Systems Principles (Koblenz,
Germany) (SOSP ’23). Association for Computing Machinery, New York, NY, USA,
482-497. https://doi.org/10.1145/3600006.3613138

Truls Asheim, Magnus Jahre, and Rakesh Kumar. 2024. CoFaaS: Automatic
Transformation-based Consolidation of Serverless Functions. In Proceedings of
the 2nd Workshop on SErverless Systems, Applications and MEthodologies (Athens,
Greece) (SESAME ’24). Association for Computing Machinery, New York, NY,
USA, 1-8. https://doi.org/10.1145/3642977.3652093

Muhammad Bilal, Marco Canini, Rodrigo Fonseca, and Rodrigo Rodrigues. 2023.
With Great Freedom Comes Great Opportunity: Rethinking Resource Allocation
for Serverless Functions. In Proceedings of the Eighteenth European Conference on
Computer Systems (Rome, Italy) (EuroSys "23). Association for Computing Ma-
chinery, New York, NY, USA, 381-397. https://doi.org/10.1145/3552326.3567506
Marc Brooker, Mike Danilov, Chris Greenwood, and Phil Piwonka. 2023. On-
demand Container Loading in AWS Lambda. In 2023 USENIX Annual Technical
Conference (USENIX ATC 23). USENIX Association, Boston, MA, 315-328. https:
//www.usenix.org/conference/atc23/presentation/brooker

Sergey Bykov, Alan Geller, Gabriel Kliot, James R. Larus, Ravi Pandya, and
Jorgen Thelin. 2011. Orleans: cloud computing for everyone. In Proceedings of
the 2nd ACM Symposium on Cloud Computing (Cascais, Portugal) (SOCC ’11).
Association for Computing Machinery, New York, NY, USA, Article 16, 14 pages.
https://doi.org/10.1145/2038916.2038932

Joao Carreira, Sumer Kohli, Rodrigo Bruno, and Pedro Fonseca. 2021. From warm
to hot starts: leveraging runtimes for the serverless era. In Proceedings of the
Workshop on Hot Topics in Operating Systems (Ann Arbor, Michigan) (HotOS

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/march.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/march.html
https://cloud.google.com/solutions/ai
https://cloud.google.com/solutions/ai
https://ai-benchmark.com
https://wasmer.io/posts/py2wasm-a-python-to-wasm-compiler
https://wasmer.io/posts/py2wasm-a-python-to-wasm-compiler
https://maven.apache.org
https://thrift.apache.org
https://aws.amazon.com/ai/machine-learning
https://learn.microsoft.com/en-us/azure/machine-learning
https://learn.microsoft.com/en-us/azure/machine-learning
https://blog.cloudflare.com/python-workers
https://blog.cloudflare.com/python-workers
https://mirkosertic.github.io/Bytecoder
https://cheerpj.com
https://www.cloudflare.com
https://www.cloudflare.com
https://cupy.dev
https://www.fastly.com
https://www.fermyon.com
https://grpc.io
https://bytecodealliance.org/articles/making-javascript-run-fast-on-webassembly
https://bytecodealliance.org/articles/making-javascript-run-fast-on-webassembly
https://microservices.io
https://www.npmjs.com
https://www.nuget.org
https://numpy.org
https://opencv.org/platforms/cuda
https://pytorch.org
https://pytorch.org/audio/0.13.1/hw_acceleration_tutorial.html
https://pytorch.org/audio/0.13.1/hw_acceleration_tutorial.html
https://www.datadoghq.com/knowledge-center/serverless-architecture
https://www.datadoghq.com/knowledge-center/serverless-architecture
https://teavm.org
https://www.tensorflow.org
https://github.com/WebAssembly/component-model
https://github.com/WebAssembly/component-model
https://webassembly.org/docs/security
https://wasi.dev
https://azure.microsoft.com/en-us/products/kubernetes-service
https://azure.microsoft.com/en-us/products/kubernetes-service
https://www.docker.com
https://www.docker.com/blog/multi-arch-build-and-images-the-simple-way
https://www.docker.com/blog/multi-arch-build-and-images-the-simple-way
https://cloud.google.com/kubernetes-engine
https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries
https://www.nvidia.com/en-us/networking/products/infiniband
https://www.nvidia.com/en-us/networking/products/infiniband
https://docs.openssl.org/3.4/man3/OPENSSL_ia32cap
https://docs.openssl.org/3.4/man3/OPENSSL_ia32cap
https://www.qemu.org
https://wasmtime.dev
https://bytecodealliance.github.io/wamr.dev
https://doi.org/10.1145/3552326.3567496
https://doi.org/10.1145/3600006.3613138
https://doi.org/10.1145/3642977.3652093
https://doi.org/10.1145/3552326.3567506
https://www.usenix.org/conference/atc23/presentation/brooker
https://www.usenix.org/conference/atc23/presentation/brooker
https://doi.org/10.1145/2038916.2038932

SESAME’ 25, March 30-April 3, 2025, Rotterdam, Netherlands

’21). Association for Computing Machinery, New York, NY, USA, 58-64. https:
//doi.org/10.1145/3458336.3465305
[50] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Podstawski, and
Torsten Hoefler. 2021. SeBS: A Serverless Benchmark Suite for Function-as-a-
Service Computing. In Proceedings of the 22nd International Middleware Conference
(Québec city, Canada) (Middleware "21). Association for Computing Machinery,
New York, NY, USA, 64-78. https://doi.org/10.1145/3464298.3476133
Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael] Franklin, Joseph E Gonzalez,
and Ion Stoica. 2017. Clipper: A Low-Latency Online Prediction Serving System.
In 14th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17). USENIX Association, Boston, MA, 613-627. https://www.usenix.org/
conference/nsdil7/technical-sessions/presentation/crankshaw
Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing
on large clusters. Commun. ACM 51, 1 (jan 2008), 107--113. https://doi.org/10.
1145/1327452.1327492
[53] Juan Fumero, Michail Papadimitriou, Foivos S. Zakkak, Maria Xekalaki, James
Clarkson, and Christos Kotselidis. 2019. Dynamic application reconfiguration
on heterogeneous hardware. In Proceedings of the 15th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (Providence, RI, USA)
(VEE 2019). Association for Computing Machinery, New York, NY, USA, 165-178.
https://doi.org/10.1145/3313808.3313819
[54] Phani Kishore Gadepalli, Sean McBride, Gregor Peach, Ludmila Cherkasova, and
Gabriel Parmer. 2020. Sledge: a Serverless-first, Light-weight Wasm Runtime for
the Edge. In Proceedings of the 21st International Middleware Conference (Delft,
Netherlands) (Middleware "20). Association for Computing Machinery, New York,
NY, USA, 265--279. https://doi.org/10.1145/3423211.3425680
[55] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung,
Siyuan Wang, Leon Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake
Padilla, and Christina Delimitrou. 2019. An Open-Source Benchmark Suite for
Microservices and Their Hardware-Software Implications for Cloud & Edge Sys-
tems. In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems (Providence, RI, USA)
(ASPLOS ’19). Association for Computing Machinery, New York, NY, USA, 3--18.
https://doi.org/10.1145/3297858.3304013
Sanjay Ghemawat, Robert Grandl, Srdjan Petrovic, Michael Whittaker, Parveen
Patel, Ivan Posva, and Amin Vahdat. 2023. Towards Modern Development of
Cloud Applications. In Proceedings of the 19th Workshop on Hot Topics in Operating
Systems (Providence, RI, USA) (HOTOS °23). Association for Computing Machin-
ery, New York, NY, USA, 110-117. https://doi.org/10.1145/3593856.3595909
Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman,
Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. 2017. Bringing the
web up to speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Barcelona,
Spain) (PLDI 2017). Association for Computing Machinery, New York, NY, USA,
185--200. https://doi.org/10.1145/3062341.3062363
Cunchen Hu, Chenxi Wang, Sa Wang, Ninghui Sun, Yungang Bao, Jieru Zhao,
Sanidhya Kashyap, Pengfei Zuo, Xusheng Chen, Liangliang Xu, Qin Zhang, Hao
Feng, and Yizhou Shan. 2023. Skadi: Building a Distributed Runtime for Data
Systems in Disaggregated Data Centers. In Proceedings of the 19th Workshop on
Hot Topics in Operating Systems (Providence, RI, USA) (HOTOS ’23). Association
for Computing Machinery, New York, NY, USA, 94-102. https://doi.org/10.1145/
3593856.3595897
[59] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. 2007.
Dryad: distributed data-parallel programs from sequential building blocks. In
Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2007 (Lisbon, Portugal) (EuroSys "07). Association for Computing Ma-
chinery, New York, NY, USA, 59-72. https://doi.org/10.1145/1272996.1273005
[60] Zhipeng Jia and Emmett Witchel. 2021. Nightcore: Efficient and Scalable Server-
less Computing for Latency-Sensitive, Interactive Microservices. In Proceed-
ings of the 26th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (Virtual, USA) (ASPLOS ’21). As-
sociation for Computing Machinery, New York, NY, USA, 152-166. https:
//doi.org/10.1145/3445814.3446701
Artjom Joosen, Ahmed Hassan, Martin Asenov, Rajkarn Singh, Luke Darlow,
Jianfeng Wang, and Adam Barker. 2023. How Does It Function? Characterizing
Long-term Trends in Production Serverless Workloads. In Proceedings of the
2023 ACM Symposium on Cloud Computing (Santa Cruz, CA, USA) (SoCC ’23).
Association for Computing Machinery, New York, NY, USA, 443-458. https:
//doi.org/10.1145/3620678.3624783
Sumer Kohli, Shreyas Kharbanda, Rodrigo Bruno, Joao Carreira, and Pedro Fon-
seca. 2024. Pronghorn: Effective Checkpoint Orchestration for Serverless Hot-
Starts. In Proceedings of the Nineteenth European Conference on Computer Systems
(Athens, Greece) (EuroSys "24). Association for Computing Machinery, New York,
NY, USA, 298-316. https://doi.org/10.1145/3627703.3629556
Tom Kuchler, Michael Giardino, Timothy Roscoe, and Ana Klimovic. 2023. Func-
tion as a Function. In Proceedings of the 2023 ACM Symposium on Cloud Computing

[51

o
8

[56

o
N

[58

[61

[62

[63

[64

[65

=
2

[67

[68

=
20,

[70

(71

3
&,

[73

[74

(76

(77

[79

Serhii Ivanenko, Carlos Segarra, and Rodrigo Bruno

(Santa Cruz, CA, USA) (SoCC ’23). Association for Computing Machinery, New
York, NY, USA, 81-92. https://doi.org/10.1145/3620678.3624648

Daniel Lehmann, Johannes Kinder, and Michael Pradel. 2020. Everything Old is
New Again: Binary Security of WebAssembly. In 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, 217-234. https://www.usenix.org/
conference/usenixsecurity20/presentation/lehmann

Zijun Li, Linsong Guo, Quan Chen, Jiagan Cheng, Chuhao Xu, Deze Zeng, Zhuo
Song, Tao Ma, Yong Yang, Chao Li, and Minyi Guo. 2022. Help Rather Than Re-
cycle: Alleviating Cold Startup in Serverless Computing Through Inter-Function
Container Sharing. In 2022 USENIX Annual Technical Conference (USENIX ATC 22).
USENIX Association, Carlsbad, CA, 69-84. https://www.usenix.org/conference/
atc22/presentation/li- zijun-help

Fangming Lu, Xingda Wei, Zhuobin Huang, Rong Chen, Minyu Wu, and Haibo
Chen. 2024. Serialization/Deserialization-free State Transfer in Serverless Work-
flows. In Proceedings of the Nineteenth European Conference on Computer Systems
(Athens, Greece) (EuroSys '24). Association for Computing Machinery, New York,
NY, USA, 132-147. https://doi.org/10.1145/3627703.3629568

Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro. 2013. Service-oriented
programming with Jolie. In Web Services Foundations. Springer New York, 81-107.
https://doi.org/10.1007/978-1-4614-7518-7_4

Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter, Andrea
Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. SOCK: Rapid Task Provi-
sioning with Serverless-Optimized Containers. In 2018 USENIX Annual Tech-
nical Conference (USENIX ATC 18). USENIX Association, Boston, MA, 57-70.
https://www.usenix.org/conference/atc18/presentation/oakes

Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo Kim. 2019.
libmpk: Software Abstraction for Intel Memory Protection Keys (Intel MPK). In
Proceedings of the 2019 USENIX Conference on Usenix Annual Technical Conference
(Renton, WA, USA) (USENIX ATC ’19). USENIX Association, USA, 241--254.
Francisco Romero, Qian Li, Neeraja] Yadwadkar, and Christos Kozyrakis.
2021. INFaaS: Automated Model-less Inference Serving. In 2021 USENIX An-
nual Technical Conference (USENIX ATC 21). USENIX Association, 397-411.
https://www.usenix.org/conference/atc21/presentation/romero

Zhenyuan Ruan, Seo Jin Park, Marcos K. Aguilera, Adam Belay, and Malte
Schwarzkopf. 2023. Nu: Achieving Microsecond-Scale Resource Fungibility
with Logical Processes. In 20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23). USENIX Association, Boston, MA, 1409-1427.
https://www.usenix.org/conference/nsdi23/presentation/ruan

Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry, Paul Batum,
Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. 2020. Serverless in the Wild: Characterizing and Optimizing the
Serverless Workload at a Large Cloud Provider. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). USENIX Association, 205-218. https://www.usenix.
org/conference/atc20/presentation/shahrad

Simon Shillaker and Peter Pietzuch. 2020. Faasm: Lightweight Isolation for
Efficient Stateful Serverless Computing. In Proceedings of the 2020 USENIX Con-
ference on Usenix Annual Technical Conference (USENIX ATC 20). USENIX Asso-
ciation, USA, Article 28, 15 pages. https://www.usenix.org/conference/atc20/
presentation/shillaker

Alen Suljkanovi¢, Branko Milosavljevi¢, Vladimir Indi¢, and Igor Dejanovié.
2022. Developing Microservice-Based Applications Using the Silvera Domain-
Specific Language. Applied Sciences 12, 13 (2022), 6679. https://doi.org/10.3390/
app12136679

Konstantin Taranov, Rodrigo Bruno, Gustavo Alonso, and Torsten Hoefler. 2021.
Naos: Serialization-free RDMA networking in Java. In 2021 USENIX Annual
Technical Conference (USENIX ATC 21). USENIX Association, 1-14. https://www.
usenix.org/conference/atc21/presentation/taranov

Muhammad Tirmazi, Adam Barker, Nan Deng, Md E. Haque, Zhijing Gene Qin,
Steven Hand, Mor Harchol-Balter, and John Wilkes. 2020. Borg: the next genera-
tion. In Proceedings of the Fifteenth European Conference on Computer Systems
(Heraklion, Greece) (EuroSys °20). Association for Computing Machinery, New
York, NY, USA, Article 30, 14 pages. https://doi.org/10.1145/3342195.3387517
Ao Wang, Shuai Chang, Huangshi Tian, Hongqi Wang, Haoran Yang, Huiba
Li, Rui Du, and Yue Cheng. 2021. FaaSNet: Scalable and Fast Provisioning of
Custom Serverless Container Runtimes at Alibaba Cloud Function Compute. In
2021 USENIX Annual Technical Conference (USENIX ATC 21). USENIX Association,
443-457. https://www.usenix.org/conference/atc21/presentation/wang-ao
Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang, Jian He,
Yong Li, Liping Zhang, Wei Lin, and Yu Ding. 2022. MLaaS$ in the Wild: Workload
Analysis and Scheduling in Large-Scale Heterogeneous GPU Clusters. In 19th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 22).
USENIX Association, Renton, WA, 945-960. https://www.usenix.org/conference/
nsdi22/presentation/weng

Mengyao Xie, Chenggang Wu, Yingian Zhang, Jiali Xu, Yuanming Lai, Yan Kang,
Wei Wang, and Zhe Wang. 2022. CETIS: Retrofitting Intel CET for Generic
and Efficient Intra-process Memory Isolation. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security (Los Angeles, CA,
USA) (CCS ’22). Association for Computing Machinery, New York, NY, USA,

https://doi.org/10.1145/3458336.3465305
https://doi.org/10.1145/3458336.3465305
https://doi.org/10.1145/3464298.3476133
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/3313808.3313819
https://doi.org/10.1145/3423211.3425680
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1145/3593856.3595909
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3593856.3595897
https://doi.org/10.1145/3593856.3595897
https://doi.org/10.1145/1272996.1273005
https://doi.org/10.1145/3445814.3446701
https://doi.org/10.1145/3445814.3446701
https://doi.org/10.1145/3620678.3624783
https://doi.org/10.1145/3620678.3624783
https://doi.org/10.1145/3627703.3629556
https://doi.org/10.1145/3620678.3624648
https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
https://www.usenix.org/conference/atc22/presentation/li-zijun-help
https://www.usenix.org/conference/atc22/presentation/li-zijun-help
https://doi.org/10.1145/3627703.3629568
https://doi.org/10.1007/978-1-4614-7518-7_4
https://www.usenix.org/conference/atc18/presentation/oakes
https://www.usenix.org/conference/atc21/presentation/romero
https://www.usenix.org/conference/nsdi23/presentation/ruan
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/atc20/presentation/shillaker
https://www.usenix.org/conference/atc20/presentation/shillaker
https://doi.org/10.3390/app12136679
https://doi.org/10.3390/app12136679
https://www.usenix.org/conference/atc21/presentation/taranov
https://www.usenix.org/conference/atc21/presentation/taranov
https://doi.org/10.1145/3342195.3387517
https://www.usenix.org/conference/atc21/presentation/wang-ao
https://www.usenix.org/conference/nsdi22/presentation/weng
https://www.usenix.org/conference/nsdi22/presentation/weng

Mosaic: Optimizing Cloud Resource Efficiency with Lazily-Packaged Application Modules SESAME’ 25, March 30-April 3, 2025, Rotterdam, Netherlands

2989--3002. https://doi.org/10.1145/3548606.3559344 https://doi.org/10.1145/3617232.3624871

[80] Hanfei Yu, Rohan Basu Roy, Christian Fontenot, Devesh Tiwari, Jian Li, Hong [81] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Zhang, Hao Wang, and Seung-Jong Park. 2024. RainbowCake: Mitigating Cold- Murphy McCauly, Michael J Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
starts in Serverless with Layer-wise Container Caching and Sharing. In Pro- silient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Clus-
ceedings of the 29th ACM International Conference on Architectural Support for ter Computing. In 9th USENIX Symposium on Networked Systems Design and
Programming Languages and Operating Systems, Volume 1(La Jolla, CA, USA) (AS- Implementation (NSDI 12). USENIX Association, San Jose, CA, 15-28. https:

PLOS °24). Association for Computing Machinery, New York, NY, USA, 335-350. //www.usenix.org/conference/nsdil2/technical- sessions/presentation/zaharia

https://doi.org/10.1145/3548606.3559344
https://doi.org/10.1145/3617232.3624871
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia

	Abstract
	1 Introduction
	2 Inefficiencies in Modern Cloud Platforms
	2.1 Hardware-agnostic Execution
	2.2 Locality-unaware Communication
	2.3 Application Dependencies Duplication

	3 Existing Cloud Platform Optimizations
	4 Mosaic Design and Architecture
	4.1 Cloud Modules
	4.2 Module System Interface
	4.3 Module Registry

	5 Early Prototype and Research Challenges
	6 Conclusion
	Acknowledgments
	References

