
Serverless Confidential Containers: Challenges and Opportunities
Carlos Segarra

∗

cs1620@ic.ac.uk

Imperial College London

London, United Kingdom

Tobin Feldman-Fitzthum

tobin@ibm.com

IBM Research

Yorktown Heights, US

Daniele Buono

dbuono@us.ibm.com

IBM Research

Yorktown Heights, US

Peter Pietzuch

prp@imperial.ac.uk

Imperial College London

London, United Kingdom

ABSTRACT

Serverless computing allows users to execute pieces of code (so

called functions) on-demand in the cloud without having to provi-

sion any hardware resources. However, by executing in the cloud

and delegating control over hardware resources, the integrity of

the execution and the confidentiality of function code and data are

at the mercy of the cloud provider and serverless runtime. Confi-

dential computing aims to remove trust from the cloud provider

by executing applications inside hardware enclaves. In spite of the

increasing adoption of confidential computing, designing a confi-

dential serverless runtime with moderate performance overhead

remains an open challenge.

In this short article we present our experience porting the Kna-

tive serverless runtime to a confidential setting using Confiden-

tial Containers (CoCo), a technology that allows the execution

of unmodified (encrypted) container images inside confidential

VMs (cVMs). Our results show that cVMs are not ready to execute

container-based serverless functions. Starting a serverless func-

tion in a CoCo from an encrypted container image with attestation

takes up to 17 seconds. Starting 16 serverless functions concurrently

takes more than three minutes, 20× slower than its non-confidential

counterpart. We analyze the main sources of overhead, and outline

the research challenges to bridge the gap between confidential and

serverless computing.

KEYWORDS

confidential computing, serverless, confidential serverless, confi-

dential virtual machines, knative

ACM Reference Format:

Carlos Segarra, Tobin Feldman-Fitzthum, Daniele Buono, and Peter Pietzuch.

2024. Serverless Confidential Containers: Challenges and Opportunities. In

The 2nd Workshop on SErverless Systems, Applications and MEthodologies

∗
Work partially done whilst visiting IBM Research.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SESAME ’24, April 22, 2024, Athens,Greece
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0545-8/24/04

https://doi.org/10.1145/3642977.3652097

Baseline (sandbox) Cold Start Warm Start Scale Out (0→16)

runc (container) [39] 6 s 1 s 16 s

Kata (VM) [34] 7 s 2 s 17 s

CC-Knative (cVM) 17.5 s 17.5 s 190 s

CC-Knative/ Kata 2.5 × 8.5 × 11 ×

Table 1: Cold start, warm start, and scale-out times of a simple

Knative service using different sandboxes on K8s (Fig. 3).

(SESAME ’24), April 22, 2024, Athens, Greece. ACM, New York, NY, USA,

9 pages. https://doi.org/10.1145/3642977.3652097

1 INTRODUCTION

Serverless computing allows the execution of user-defined pieces

of code, so-called serverless functions, in cloud-owned hardware

resources. Serverless users register functions with a serverless run-

time [63, 74, 87], configure what events may trigger function execu-

tion, and are only billed for the time their functions are running. In

turn, the serverless runtime provisions the execution environment

for functions to execute in, scaling it up or down in response to

event load, transparently to the user. This separation of concerns

between function definition (serverless user), and cloud-resources’

provisioning (serverless runtime), makes serverless easy to adopt

for users, and gives runtimes further opportunities to optimize

hardware efficiency and usage. This has made serverless comput-

ing an ever-increasing cloud solution attracting interest from re-

search [6, 19, 58, 69, 90, 100] and industry [2, 3, 18, 60, 84, 89] alike.

Years of serverless in production have allowed research to charac-

terize both what kind of functions users define, and how they want

to define and execute them. First, traces from different production

clusters [60, 89] indicate that serverless functions are short-lived

and bursty. Second, insights from leading serverless offerings [18]

indicate that users want to define functions as OCI images [40] and

isolate them using virtual machines (VMs) [22]. The former has

motivated the key performance metrics in serverless: cold-starts,

warm-starts, and scale-up latency. The latter has motivated the

development of lighter-weight VMs [3] and fast container image

provisioning and start-up [18, 75]. In this work we assume a server-

less environment where functions are defined using OCI images,

and isolated using VMs, as increasingly adopted by the leading

cloud providers [18, 74].

The increasing popularity of the cloud to store and process data

in favour of on-premise clusters has raised concerns in terms of

https://doi.org/10.1145/3642977.3652097
https://doi.org/10.1145/3642977.3652097

SESAME ’24, April 22, 2024, Athens,Greece Segarra et al.

data confidentiality and execution integrity [1, 20, 23, 72]. These

concerns are exacerbated in a serverless context, where users do

not have any control over the exeuction of their functions, as it is

delegated to the serverless runtime. Confidential computing [23]

aims to make cloud computing more trustworthy by allowing the

creation of hardware-backed trusted execution environments (so-

called enclaves) [7, 12, 54, 56] in otherwise untrusted cloud-owned

servers. The security and trustworthiness of enclaves relies on three

pillars [62]: (i) the confidentiality of a component within the cloud

server (called the root-of-trust, RoT), (ii) the integrity and well-

functioning of the CPU chip, and (iii) the ability to remotely attest

the identity and integrity of the RoT and the CPU chip. If all these

conditions meet, confidential computing can be used to protect the

confidentiality and integrity of a variety of cloud workloads [14,

21, 33] and is being used by leading corporations and governments

worldwide [20, 72].

Unfortunately, the requirements for confidential computing are

at odds with serverless. First, the first-iteration of hardware en-

claves, process-based enclaves, as provided by Intel SGX [54] and

Arm TrustZone [12], required application re-write or offered very

limited compatibility with lift-and-shift approaches [43, 46]. None
of which capable of running arbitrary OCI images. Second, the

security of enclaves comes at the cost of (considerably) longer start-

up times and (usually) interactive remote attestation protocols,

both negatively impacting cold-start times. Lastly, integrity protec-

tion against rollback [86] and TOCTTOU [99] attacks prevent the

adoption of sandbox pre-warming [69] or sandbox re-use [6], both

common techniques to speed up serverless execution. These limita-

tions mean that, other than some academic efforts [5, 17, 45, 53, 96],

confidential serverless remains to see widespread adoption.

In this short paper we present our experience building CC-

Knative, a port of the Knative [63] serverless runtime to Con-

fidential Containers (CoCo) [33] (§3). CoCo allows the execution of

unmodified (encrypted) OCI images inside VM-based enclaves (so-

called confidential VMs, cVMs) as provided by AMD SEV(-SNP) [7]

and Intel TDX [56]. Our results are summarized in Tab. 1 and

expanded in §4. Compared to Kata Containers [34], a container

runtime that transparently runs K8s pods inside VMs, starting an

encrypted and attested container in a cVM adds 10 and 14 seconds

to the cold and warm start times respectively. Even more, scaling

from 0 to 16 containers is three minutes (20×) slower. These results
show that cVMs are not ready to execute container-based serverless

functions. We identify two key research challenges to bridge the

gap between serverless and confidential computing (§5): (i) how

can we securely pre-warm and re-use cVMs? and (ii) how can we

efficiently use and share encrypted container images?

2 CONFIDENTIAL SERVERLESS COMPUTING

2.1 The Need for Confidential Serverless

Serverless computing has seen widespread adoption in a variety

of domains like image processing [44], machine learning infer-

ence [57], linear algebra [59], life sciences research [10] and trans-

action fraud detection [13], among many others. Growing concerns

about data privacy in the cloud [20, 72], government-sponsored

mass surveilance programs [78], and increasing data protection

regulation [1], have motivated the adoption of confidential comput-

ing in many cloud services like analytics [102], databases [15], and

general container services [14].

However, confidential computing has yet to see widespread adop-

tion in the serverless community. This is because the performance

overheads (particularly bootstrapping overheads) are at direct odds

with serverless cold starts. In addition, serverless zero-ops deploy-

ment model seems to come at the expense of code and data confi-

dentiality and execution integrity: if you want the serverles runtime

to control the whole hardware provisioning and execution lifecycle

of your function, you must accept that the serverless runtime will

know, at least, the contents of the function that it is executing. We

refute this statement and claim that it is possible to build a server-

less runtime that is completely oblivious of the functions that it

is executing and can not tamper with neither the hardware that

it is provisioning, nor the data that is being processed (§3). This

design, comes at a performance cost (Tab. 1). We breakdown the

main sources of overhead and hint at the solutions that we plan on

exploring in future work (§4).

Our threat model is shared with that of confidential comput-

ing [55] and confidential containers in particular [50]. We do not

trust the host operating system and virtual machine monitor (VMM)

neither any other co-located processes or virtual machines. We

assume that any distrusted software may want to break the confi-

dentiality of the serverless function code, the confidentiality of the

data being processed, or the integrity of the execution results. Most

importantly, in a serverless context, this means that we do not trust

neither the serverless runtime (e.g. Knative [63]) nor the orchestra-

tion framework (e.g. K8s) nor the cloud provider’s software stack

(e.g. IBM Cloud [51]). Any physical, side-channel, or availability

attacks outside of the scope of the confidential containers’ threat

model is also out of the scope in this work.

2.2 Design Space for Confidential Serverless

There are different design options for a confidential serverless run-

time [49]. Most existing work [5, 17, 45, 53, 96] falls in the category

of what we call process-centric security. These runtimes use enclaves

to execute specific parts of the function’s code, or lift-and-shift func-
tions inside process-based enclaves. The former requires application

re-write, and the latter offers very limited compatibility with arbi-

trary functions, let alone containers. However, these approaches

come at the smallest Trusted Computing Base (TCB) size.

On the other end of the spectrum in terms of TCB size, we find

runtimes that use node-centric security [94]. These runtimes run the

whole K8s node inside a cVM, and all K8s nodes belong to the same

trust domain. Inasmuch as this approach limits the data breaches

outside of the K8s cluster, it is a poor fit for serverless where differ-

ent serverless users distrust each other, and the serverless runtime.

The TCB for these runtimes comprises the K8s control and data

plane, as well as the host and guest’s software stack.

In this work, we opt for a middle-ground: pod-centric secu-

rity [29]. In this design, each K8s pod runs in a different cVM,

providing strong isolation from different pods, and from the K8s

control plane. This is the design chosen both by Kata Contain-

ers [34] and Confiential Containers [33]. CC-Knative builds on

these two projects. The pod-centric approach is very similar to a

Serverless Confidential Containers: Challenges and Opportunities SESAME ’24, April 22, 2024, Athens,Greece

K8s Bare Metal Node
kubelet

Host Kernel

containerd

runc-shim kata-
shim

Hypervisor (QEMU + KVM)

Guest Kernel

Kata Agent

Kn
Svc

Kn
Sidecar

Pod (cVM)

Guest Kernel

Kata Agent

Kn
Svc

Kn
Sidecar

Pod (cVM)

Pod (ns)

Kn Controller

CRI

shim-v2

Figure 1: Block diagram of a K8s cluster using CC-Knative.

container-centric approach, whereby each container runs in a differ-

ent cVM. The pod-centric approach is better suited for a K8s-native

environment, thus a better choice to port the Knative serverless

runtime.

3 CC-KNATIVE: KNATIVE ON COCO

In this section we present CC-Knative, our prototype to run en-

crypted Knative services inside cVMs with CoCo. We first describe

how CC-Knative seamlessly integrates in an existing K8s clus-

ter (§3.1) and then move on to describe how we can establish trust

on CC-Knative using remote attestation (§3.2). The implemen-

tation efforts required to put everything together are described

in §4.

3.1 Integration with K8s

Knative (Kn) is a K8s-native serverless runtime [63]. A Knative

deployment consists of a control-plane component, called the Kn
Controller, and a set of custom resources (CRDs in K8s terminol-

ogy) [64]. Serverless functions in Knative are called (Kn) Services,
and are identified by an OCI image digest. Knative resolves im-

age tags to image digests to guarantee execution integrity and

immutability [65]. For monitoring, network programming, and ob-

servability, Knative deploys a sidecar container in the same pod

where the service executes [64]. Pods in K8s share network and stor-

age namespaces, and are also the trust boundary in CC-Knative

as we opted for a pod-centric approach §2.2. Therefore, the sidecar

component will be inside CC-Knative’s TCB.

Fig. 1 depicts the high-level architecture of a CC-Knative de-

ployment. Even though CC-Knative integrates transparently with

upstreamK8s, it can not be deployed in any K8s cluster. In particular,

CC-Knative can not be deployed in a virtual K8s cluster where K8s

nodes are running inside VMs. This is because CC-Knative heavily

relies on the host’s virtualization stack, and nested confidential vir-

tualization is only available in a very limited form, in closed-source

corporate environments [73]. CC-Knative will benefit from any

improvements on nested (confidential) virtualization.

In a non-confidential Knative deployment, the local kubelet [67]
process talks with a working container runtime over the Container

Runtime Interface (CRI) [66]. In CC-Knative, our container runtime

of choice is containerd [24]. This is because containerd is very
flexible and modular in itself, and supports concurrently executing

pods with different runtimes as long as they implement the shim-v2

K8s Bare Metal AMD SEV Node

kubelet

Host Kernel

containerd

kata-shim

QEMU + KVM

Guest Kernel
Kata Agent

Kn
Svc

Kn
Sidecar

Pod (cVM)CRI

shim-v2

AMD PSP

image-rs KBC

OVMF

runc-shim

Pod (ns)

Kn Controller

Trusted Node (RP)

Container Registry

kernel_SHA initrd_SHA

User (Guest Owner)

Kn
Svc

Kn
Sidecar

SEV_Version
OVMF_SHA
kernel_SHA
initrd_SHA

Kn Service

Kn Sidecar

12

3

4

5

6

7

8

validate

decrypt

measure

9

inject

Figure 2: Steps to attest a Knative Service in CC-Knative.

protocol [25]. When deploying a non-confidential pod (e.g. the

Knative controller), containerd will execute containers directly

in the host environment using runc [39] and isolate different pods

using namespaces [70]. When deploying a confidential pod (by just

adding an annotation to the pod manifest) containerd will use the
kata-shim [37] to execute containers inside a cVM, and execute

different pods in different cVMs.

To start a cVM, the kata-shim can use a variety of hypervi-

sors. The choice of hypervisor and cVM software stack is tightly

coupled to the attestation protocol (§3.2). In this section it suffices

to say that CC-Knative uses QEMU [79] (with KVM [68]) as hy-

pervisor, and uses a virtual firmware image to boot a Linux guest

inside the cVM. Inside the guest, the Kata Agent [35] runs as the
/init process [11], and communicates with the kata-shim over a

vSocket [98] to make the pod inside the cVM look like a regular

pod. This vSocket interface is the main attack vector into the cVM

and it is, as a consequence, highly constrained [38].

3.2 Starting a Knative Service in CC-Knative

To guarantee the confidentiality and integrity of Knative services

and the data therein processed we need verifiable evidence that

the system in Fig. 1 has been correctly bootstrapped and has not

been tampered with. Remote attestation [48] is a cryptographic

protocol through which a relying party (RP) can gain confidence

of the identity and integrity of a piece of software running in an

untrusted environment. For liveness purposes, remote attestation is

generally an interactive process between the RP and the software to

be attested. Given that serverless function’s execution is triggered

by different events (non-interactively w.r.t the user), in CC-Knative

we delegate the role of RP to an external, always available, trusted

node. The implementation and availability of this trusted RP node

is out of the scope of this work, and we refer to the relevant re-

lated work [71]. In CC-Knative we heavily leverage the attestation

infrastructure already in place for CoCo [28], and the trusted RP

node runs CoCo’s Key Broker Service (KBS) [30].

The protocol to securely start Knative services in CC-Knative

is depicted in Fig. 2. The protocol is specific to the current CC-

Knative prototype that uses AMD SEV as cVM technology of

choice. A relatively similar protocol would apply for AMD SEV-

SNP or Intel TDX (with some caveats §5, §4.3), both supported

in CoCo [29]. Ahead-of-time, the user registering the serverless

function generates a launch measurement [7] of the cVM (❶). This

SESAME ’24, April 22, 2024, Athens,Greece Segarra et al.

runc kata
coco-nosev coco coco-fw

coco-fw-sig
CC-Knative

0

5

10

15

Ti
m

e
[s

]

pod-scheduling
make-pod-sandbox
image-pull
warm
cold

Figure 3: Start-up latency for a Knative service.

launch measurement includes the SEV version, together with the

hash digests of: the virtual firmware (OVMF [95]) image, the kernel,

the kernel command line, and the initrd. The launch measurement

can be generated in a non-SEVmachine, with open source tools [97].

Then, the user can encrypt the layers of the service image (using for

example skopeo [27] and ocicrypt [26]), and sign both the service

and sidecar image for integrity (using for example cosign [91]).

The launch measurement and encryption and signing keys are

then stored in the trusted RP (❷) and the encrypted and signed

container images in any compatible container registry (for example

GHCR [82], or Quay [81], ❸).

When the Knative controller triggers the execution of a Knative

Service, QEMU starts the cVM. In the QEMU command, QEMU

presents the OVMF image as a flash drive in flash0. When placing

the OVMF image in memory, QEMU injects the hash digest of

the kernel, kernel command line, and initrd in the OVMF image

itself (❹). This mechanism [83] is crucial to the attestation protocol,

and was upstreamed to QEMU [16] and OVMF [77] by the CoCo

developers. Once the digests are injected, AMD’s PSP measures

and encrypts the memory pages for the cVM [7], which at this

point only include the patched OVMF image (❺). Then, during

OVMF boot, QEMU sends OVMF the blobs for the kernel, kernel

command line, and initrd using the fw_cfg interface [80]. Before

transferring control to the kernel, OVMF measures the given blobs

against the expected digests ❻. If QEMU provides a malicious blob,

the measurement fails and cVM boot aborts. Similarly, if QEMU

injects the digest of the malicious blob during ❹, the measurement

in ❺ fails, aborting cVM boot too.

The software to interact with the kata-shim (the Kata Agent), to
interact with the trusted RP node (the Key Broker Client, KBC [32]),

and to fetch and decrypt the container images (image-rs [31]),

is distributed inside the initrd. As a consequence, its’ integrity
is also validated in ❻. The guest runs an SEV-enlightened Linux

kernel, uses the Kata Agent as /init process, and boots directly

from the initrd (without a bootloader). To fetch the encryption

and signature keys from ❷, the KBC presents the trusted RP node

the launch measurement from ❺ signed by the PSP (❼). Finally,

image-rs fetches the encrypted and signed container images (❽)

and validates the signatures and decrypts the image layers (❾).

4 EVALUATION

Motivated by Tab. 1, in this section we aim to answer the following

questions: (i) what are the different contributors to CC-Knative’s

overhead? (§4.1)? Particularly in terms of (ii) cold starts (§4.2), (iii)

warm starts (§4.3), and (iv) scale-out latency? (§4.4)

Evaluation Set-Up.We run all experiments on a single-node Ku-

bernetes (v1.28.2) cluster. Our node is a bare metal server on IBM

Cloud [52] with an AMD EPYC 7763 (Milan architecture) CPU,

with 128 cores and SEV enabled. We use CoCo version v0.7.0 and

Knative v1.11.0. The CoCo version pins the containerd, Kata
Containers, and guest kernel version. For our OVMF patches we

use OVMF version edk2-stable202302.
Implementation. To implement CC-Knative we had to configure

the Knative controller to spawn service pods in confidential con-

tainers. We also had to configure the KBS to verify the integrity

of the sidecar, and the integrity and confidentiality of the service

pod. Lastly, we had to patch the Kata Agent to correctly resolve

Knative services from image digests. All the required patches and

evaluation scripts are open-source and available at: removed for
anonymity.
Baselines.We compare CC-Knative with a variety of baselines

and with different security features disabled. As non-confidential

baselines we use runc, the default sandbox in Knative, that ex-

ecutes different services as different containers in the host, and

Kata that executes different pods in different VMs. We also com-

pare against CC-Knative with no attestation at all (coco), with
only launch measurement attestation (coco-fw), also adding im-

age signature (coco-fw-sig), and lastly also adding image en-

cryption (coco-fw-sig-enc). This last baseline is equivalent to

CC-Knative. In addition, we also configure a baseline to use CC-

Knative with non-SEV VMs (coco-nosev), and the same baseline

with OVMF (non-SEV guests in Kata use SeaBIOS [85] by default,

coco-nosev-ovmf).
Metrics.We are interested in measuring the key metrics that we

identified for serverless runtimes: cold starts, warm starts, and scale

up latency. As a consequence, we do not study the performance

overheads of using cVMs to execute container images. We refer

to the relevant related work [4, 8, 9]. For all experiments we use a

very simple Knative Service, a Python "Hello World", distributed as

part of Knative’s demos [42].

4.1 End-to-end Start-Up Latency

Fig. 3 summarises the end-to-end latency to start a Knative service

for the first time (cold-starts, bars with dots), and subsequent times

(warm-starts, bars with diagonal lines). Compared to Kata, using
CC-Knative adds 10 and 14 extra seconds to cold and warm starts

respectively.

To sanity check the results, the time to create a VM (make-pod-sandbox)
for non-SEV guests (kata, coco-nosev) is roughly the same, around

1 second. Similarly, the time to pull the container images (image-pull)
for baselines that do do not pull images inside the guest (i.e. do

not use image-rs, runc and kata) is roughly the same, around 5

seconds. Lastly, the time to schedule the pod (pod-scheduling) is
roughly the same for all baselines and we can ignore it from now

onwards.

The results in Fig. 3 rise three different questions. In terms of cold

starts (§4.2), (i) why is cVM start-up 4 seconds slower than VM start-

up? (§4.2.1) (ii) why is image pulling inside the guest 3-5 seconds

Serverless Confidential Containers: Challenges and Opportunities SESAME ’24, April 22, 2024, Athens,Greece

0 1 2 3 4 5 6
Time [s]

make-pod-sandbox

host-setup

start-vm

pre-attestation

guest-setup

ovmf-booting

ovmf-dxe

ovmf-measure-verify

guest-kernel

kata-agent

Figure 4: Flame graph of the time spent booting a cVM.

slower than host-side pulling? (§4.2.2). In terms of warm starts, (iii)

why are there no warm starts for cVM-based baselines? (§4.3)

4.2 Cold Starts

4.2.1 cVM Start-Up Overhead. To break down the overheads of

starting a cVM, we patch OVMF to log performance counter values

and use these to create a flame graph [47] of the make-pod-sandbox
bar in Fig. 3 for the CC-Knative baseline. We present the flame

graph in Fig. 4.

We differentiate between host-setup, the time spent preparing

the cVM on the host, and guest-setup, the time spent from OVMF

start-up to the Kata Agent being responsive. Within the host set up,

most time is spent in the start-vm task, which corresponds to the

time spent executing the QEMU command. We can also see that

the time spent waiting for the PSP in pre-attestation is compar-

atively low. Within the guest set up, we spend 4 seconds booting

OVMF, and 0.7 seconds booting Linux (the time to start the Kata

Agent is negligible). Inside OVMF, we spend most time initializing

the driver’s execution environment (DXE phase in the PEI specifica-

tion [93]). In particular, the time spent measuring the blobs provided

by QEMU through the fw_cfg interface (ovmf-measure-verify)
is also comparatively low.

Intuitively, it seems that we spend a lot of time executing virtual

firmware in OVMF. However, it is hard to confirm this hypothesis

without comparing the flame graphs of different baselines. To this

extent, in Fig. 5 we include three flame graph comparisons for

different baselines. The top flame graph always corresponds to

CC-Knative, and the bottom one to the compared-to baseline. If

we compare the flame graph of CC-Knative to Kata (Fig. 5a), we
observe that: (i) the start-vm task is slowed down by 10× and (ii)

the ovmf-booting task is slowed down by 50-100×.
The start-vm task corresponds to the time spent executing the

QEMU command. When provisioning an SEV guest (non-SNP),

QEMU must provision (and pin) all memory pages assigned to the

guest upfront [4, 61]. Thus, our hypothesis is that the slowdown

in (i) is due to the memory page provisioning for SEV guests. To

confirm this hypothesis, we plot the same start-up latency as we in-

crease the guest’s memory size (i.e. QEMU’s -m flag [76]) in Fig. 6a.

As we expected, the latency increases for SEV guests as we increase

the memory size. We take the top-most, right-most, point in Fig. 6a

(CC-Knative-128 GB memory size), and compare the flame graph

with the original CC-Knative flame graph (with the default 2 GB

guest memory size) in Fig. 5b. As we expected again, all the dif-

ference in the flame graphs correspond to the start-vm task. This

confirms our hypothesis that the slowdown in the start-vm task
corresponds to the SEV guest memory provisioning mechanism.

The ovmf-booting task corresponds to the time spent executing

the virtual firmware binary. The slowdown reported in Fig. 5a is not

a fair one, the Kata baseline uses SeaBIOS [85] as virtual firmware,

whereas CC-Knative uses OVMF. For an apples-to-apples com-

parison, we patch the Kata baseline to use OVMF instead, and

report the flame graph comparison in Fig. 5c. Still, virtual firmware

execution is 4-5× slower. The only noticeable difference between

CC-Knative’s OVMF package and Kata’s is the measurement and

verification of the kernel, kernel command line, and initrd mem-

ory blobs passed by QEMU via the fw_cfg interface. To check

whether this measurement is the source of overhead, we measure

the start-up latency as we increase the size of the initrd in Fig. 6b.

Unlike before, the start-up latency does not seem to be greatly in-

fluenced by the initrd size. We then add additional monitoring

to OVMF, and present a zoomed in flame graph comparison of

CC-Knative’s OVMF execution and Kata’s with OVMF in Fig. 6c

(left). In addition, and for further clarification, we plot a per-event

slowdown in Fig. 6c (right). The blob measurement and verification

is now part of the dxe-dispatch task that is only slowed down by

a factor of 2×. On the other hand, the dxe-ctors task is slowed

down by a factor of 20×. This is unexpected, likely a bug in SEV’s

OVMF package, and something that we are looking into fixing.

In summary, starting a cVM is 4 seconds slower than starting

a VM. Provisioning all guest memory pages upfront introduces 1

second for a 2 GB guest and the remaining 3 seconds come from an

unaccounted slowdown in the OVMF DXE constructor phase.

4.2.2 Image Pulling Overhead. Fig. 3 reports that pulling the im-

ages for both the Knative service and Knative sidecar is between

3-5 seconds slower when pulling inside the guest (using image-rs)
than when pulling from the host (runc and kata baselines). The

variability between guest-side pulling baselines is to be expected:

some baselines just pull regular images (coco) whereas others pull
signed and encrypted images (CC-Knative). But even for the base-

lines that pull unencrypted and unsigned images, image pulling is

still 3 seconds slower.

In Fig. 7a we plot the combined flame graph of pulling both

container images in CC-Knative. The first thing we notice is that

images are pulled in serial, whereas for the host-side pulling base-

lines they are pulled in parallel. This is because when forward-

ing Kata’s PullImage API call [36] from the host to the guest

it becomes blocking (whereas normally it would not block). The

second thing we notice is that fetching image layer bytes over

the internet (pull-single-layer task) is roughly the same for

both images. However, processing these bytes (i.e. decompressing

for the sidecar, or decompressing and decrypting for the service,

handle-single-layer task) takes very different amounts of time.

This makes us conclude that the biggest source of overhead in

pulling a single encrypted image is decrypting image layers.

4.3 Warm Starts

Fig. 3 reports that there is no difference bewteen cold and warm

starts in CC-Knative. This is true. Right now, none of the work

involved in executing a Knative service in CC-Knative can be

re-used if the same function is invoked again shortly after. As a

SESAME ’24, April 22, 2024, Athens,Greece Segarra et al.

0 1 2 3 4 5 6
Time [s]

0 1 2 3 4 5 6
Time [s]

(a) CC-Knative (top) vs Kata (bottom)

0 5 10 15 20 25 30 35
Time [s]

make-pod-sandbox
host-setup
start-vm
pre-attestation
guest-setup

ovmf-booting
ovmf-dxe
ovmf-measure-verify
guest-kernel
kata-agent

0 5 10 15 20 25 30 35
Time [s]

(b) CC-Knative 2 GB (top) vs 128 GB (bottom)

0 1 2 3 4 5 6
Time [s]

0 1 2 3 4 5 6
Time [s]

(c) CC-Knative (top) vs Kata w/ OVMF (bottom)

Figure 5: Comparison of the flame graph to start a cVM between CC-Knative (top row) and different baselines (bottom row).

24 8 16 32 64 128
Initial VM memory size [GB]

0

10

20

30

Ti
m

e
[s

]

kata
coco-nosev

coco
coco-fw

coco-fw-sig
CC-Knative

(a) Cold starts as we increase the guest memory.

1 2 3 4 5 6 7 8 9
Multiples of default initrd size (55 MB)

0

5

10

15

20

Ti
m

e
[s

]

CC-Knative
coco-nosev

(b) Cold starts as we increase the initrd size.

0 1 2 3
Time [s]

19

20

ovmf-boot pei
load-dxe dxe

dxe-ctors
dxe-dispatchbds

0
2
4
6

Sl
ow

do
wn

 [C
C-

Kn
at

iv
e/

no
se

v-
ov

m
f]

(c) CC-Knative (top) vs Kata w/ OVMF (bottom)

0 2 4 6 8 10 12
Time [s]

image-pull

pu
ll-

m
an

ife
st

pull-layers

pull-single-layer

handle-single-layer

sig
na

tu
re

-v
al

id
at

io
n

service
sidecar

(a) Flame graph of the image-pulling process.

2 4 6 8 10 12 14 16
concurrent Knative services

0

50

100

150

200

Ti
m

e
[s

]

runc
kata
coco-nosev
coco

coco-fw
coco-fw-sig
CC-Knative

(b) Throughput-latency of service instantiation.

0 20 40 60 80 100 120 140 160
Time [s]

S0
S1
S2
S3
S4
S5
S6
S7
S8
S9

S10
S11
S12
S13
S14
S15

Kn
at

iv
e

Se
rv

ice
 Id

cVM-startup
pull-images
registry: ghcr
registry: local

(c) Time-series of starting 16 Knative services.

clarification, shortly after means shortly after the service has been

scaled-to-zero. Similarly to any other Knative service, CC-Knative

pods are left to linger for a configurable amount of time after they

are done executing, so sending two successive requests for the same

service would trigger one cold-start, not two [88].

The work involved in executing a Knative service can be divided,

as we studied in the previous sections, between provisioning a

cVM and pulling encrypted container images. Right now, cVMs

are cryptographically-bound to a guest owner, and can not be pre-

warmed. This is the case for cVMs that use pre-attestation (AMD

SEV, SEV-ES). Other cVMs (Intel TDX and AMD SEV-SNP) can

be more easily pre-warmed as they use guest-initiated attestation

protocols [62]. Even if pre-warming were to be implemented, the

eager upfront guest-memory provisioning (and memory page pin-

ning [4, 61]) for SEV(-ES) would severely limit the total amount of

pre-warmed cVMs. With SEV-SNP [101] it is possible to hot-plug

memory pages to cVMs, but with the added performance overheads

of the RMPUPDATE,PVALIDATEmechanism [92], so the performance

benefits of hot-plugging are still to be measured. In terms of im-

age pulling, CC-Knative can not rely on the untrusted host to

mount container images, even if they are encrypted (§5). The CoCo

community is exploring secure host-side pulling mechanisms [75].

4.4 Scale-Out Latency

We now analyze the last column in Tab. 1, the scale-out latency.

Fig. 7b reports the start-up latency as we increase the number of

concurrent instances, simulating the situation of scaling from 0 to 16.

We observe that, for all guest-side pulling baselines (even if they do

not use SEV, like coco-nosev), scale-up latency increases linearly

with the number of concurrent instances. To shed light on what

is going on, we take the top-most, right-most point in Fig. 7b (CC-

Knative, with 16 concurrent instances) and plot the time series of

starting each different instance in Fig. 7c. We observe that the time

to pull the images, even for the first service, is inflated by several

orders of magnitude. This is because all 16 pods are attempting to

fetch the same image from the same registry, what is causing the

container registry (GHCR [82] in this case) to severely throttle our

requests. This is an inherent scalability limitation of the guest-side

pulling approach, and can be verified by running the same baseline

with a local registry (Fig. 7c, faded bars with horizontal lines). Using

the default registry image [41] in localhost (without disabling

throttling, but having a much more permitting default than the free

tier of a commercial registry), already reduces the start-up latency

by at least an order of magnitude, confirming our hypothesis.

Serverless Confidential Containers: Challenges and Opportunities SESAME ’24, April 22, 2024, Athens,Greece

5 OPEN CHALLENGES

CC-Knative allows the execution of attested and encrypted con-

tainer images in cVMs transparently to users and Knative. It is, as a

consequence, a perfect candidate to provide multi-tenant confiden-

tial serverless in the cloud. However, the performance overheads

described in §4 are a major hindrance to widespread adoption. In

this section we outline the key research challenges to overcome.

First, to reduce cold-start times (§4.2) we need to overcome two

challenges. C1: How can we reduce the time to provision a cVM?
C2: How can we reduce the time to provision an encrypted container
image? To tackle C1, we plan on exploring existing techniques

to remove sandbox creation from the hot path [19, 90]. However,

given the nature of (pre-)attesation protocols (§3.2), this may be

challenging with SEV(-ES) cVMs. Newer cVMs also face challenges

to guarantee freshness and efficientmemory hot-plugging. To tackle

C2, we plan on exploring lazy image loading techniques [18, 75].

Second, to reduce warm-start times (§4.3), we want to be able

to re-use the effort associated to serving a cold-start. For cVM

provisioning, this involves exploring cVM re-use [6, 90]. C3: How
can we re-use a cVM without affecting its confidentiality and integrity
guarantees? For encrypted images, we face a problem of encrypted

datamovement and sharing.C4: How canwe allow sharing and re-use
of encrypted container images without affecting confidentiality?

Lastly, improvements in scale-up latency (§4.4) will come as a

combination of engineering efforts together with improvements in

cold and warm starts.

6 CONCLUSIONS

In this workwe have presented our experience building CC-Knative,

a port of the Knative serverless runtime that executes attested, en-

crypted, unmodified container images inside cVMs. CC-Knative’s

security guarantees add 10 and 14 seconds to cold and warm starts

respectively, and three minutes to scaling up from 0 to 16 func-

tions. We extensively analyze these performance overheads, and

hint towards solutions that we plan on exploring in future work.

ACKNOWLEDGMENTS

This work has been partially funded by the European Union through

the Horizon Europe CLOUDSTARS project (101086248).

REFERENCES

[1] 2021. Regulation (EU) 2016/679 of the European Parliament and of the Council of

27 April 2016 on the protection of natural persons with regard to the processing

of personal data and on the free movement of such data, and repealing Directive

95/46/EC.

[2] Mania Abdi, Samuel Ginzburg, Xiayue Charles Lin, Jose Faleiro, Gohar Irfan

Chaudhry, Inigo Goiri, Ricardo Bianchini, Daniel S Berger, and Rodrigo Fon-

seca. 2023. Palette Load Balancing: Locality Hints for Serverless Functions. In

Proceedings of the Eighteenth European Conference on Computer Systems (Rome,

Italy) (EuroSys ’23). Association for Computing Machinery, New York, NY, USA,

365–380. https://doi.org/10.1145/3552326.3567496

[3] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf

Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020. Firecracker: Light-

weight Virtualization for Serverless Applications. In 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20). USENIX Associa-

tion, Santa Clara, CA, 419–434. https://www.usenix.org/conference/nsdi20/

presentation/agache

[4] Ayaz Akram, Anna Giannakou, Venkatesh Akella, Jason Lowe-Power, and Sean

Peisert. 2021. Performance Analysis of Scientific Computing Workloads on

General Purpose TEEs. 1066–1076. https://doi.org/10.1109/IPDPS49936.2021.

00115

[5] Fritz Alder, N Asokan, Arseny Kurnikov, Andrew Paverd, and Michael Steiner.

2019. S-faas: Trustworthy and accountable function-as-a-service using intel

SGX. In Proceedings of the 2019 ACM SIGSAC Conference on Cloud Computing
Security Workshop.

[6] Mohamed Alzayat, Jonathan Mace, Peter Druschel, and Deepak Garg. 2023.

Groundhog: Efficient Request Isolation in FaaS. In Proceedings of the Eigh-
teenth European Conference on Computer Systems (Rome, Italy) (EuroSys ’23).
Association for Computing Machinery, New York, NY, USA, 398–415. https:

//doi.org/10.1145/3552326.3567503

[7] AMD. 2022. AMD Secure Encrypted Virtualization. https://developer.amd.com/

sev/.

[8] AMD. 2023. Confidential Computing Performance - Google Cloud C2D VM

Instances. https://www.amd.com/system/files/documents/3rd-gen-epyc-gcp-

c2d-conf-compute-perf-brief.pdf.

[9] AMD. 2023. Microsoft Azure Confidential Computing Powered by 3rd Gen

EPYC CPUs. https://community.amd.com/t5/epyc-processors/microsoft-azure-

confidential-computing-powered-by-3rd-gen-epyc/ba-p/497796.

[10] AntStack. 2024. Serverless For Unstructured Data Problems in Life Sciences.

https://www.antstack.com/blog/how-serverless-is-solving-unstructured-

data-problem-for-life-sciences/.

[11] archlinux Wiki. 2024. init. https://wiki.archlinux.org/title/init.

[12] Arm. 2022. Arm TrustZone. https://www.arm.com/technologies/trustzone-for-

cortex-a.

[13] Aws. 2024. Real-time fraud detection using AWS serverless andmachine learning

services. https://aws.amazon.com/blogs/machine-learning/real-time-fraud-

detection-using-aws-serverless-and-machine-learning-services/.

[14] Microsoft Azure. 2024. Confidential Containers on Azure Container

Instances. https://learn.microsoft.com/en-us/azure/container-instances/

container-instances-confidential-overview.

[15] Maurice Bailleu, Dimitra Giantsidi, Vasilis Gavrielatos, Do Le Quoc, Vijay Na-

garajan, and Pramod Bhatotia. 2021. Avocado: A Secure In-Memory Distributed

Storage System. In 2021 USENIX Annual Technical Conference (USENIX ATC
21). USENIX Association, 65–79. https://www.usenix.org/conference/atc21/

presentation/bailleu

[16] James Bottomley. 2024. QEMUMailing List - sev: enable secret injection to a self

described area in OVMF. https://lore.kernel.org/qemu-devel/20201214154429.

11023-1-jejb@linux.ibm.com/.

[17] Stefan Brenner and Rüdiger Kapitza. 2019. Trust more, serverless. In Proceedings
of the 12th ACM International Conference on Systems and Storage.

[18] Marc Brooker, Mike Danilov, Chris Greenwood, and Phil Piwonka. 2023. On-

demand Container Loading in AWS Lambda. In 2023 USENIX Annual Technical
Conference (USENIX ATC 23). USENIX Association, Boston, MA, 315–328. https:

//www.usenix.org/conference/atc23/presentation/brooker

[19] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger, and

Jonathan Appavoo. 2020. SEUSS: Skip Redundant Paths to Make Serverless

Fast. In Proceedings of the Fifteenth European Conference on Computer Systems
(Heraklion, Greece) (EuroSys ’20). Association for Computing Machinery, New

York, NY, USA, Article 32, 15 pages. https://doi.org/10.1145/3342195.3392698

[20] Google Cloud. 2022. Confidential Computing. https://cloud.google.com/

confidential-computing.

[21] Google Cloud. 2022. Ubiquitous Data Encryption. https://cloud.google.com/

compute/confidential-vm/docs/ubiquitous-data-encryption.

[22] Google Cloud. 2024. What is a Virtual Machine? https://cloud.google.com/

learn/what-is-a-virtual-machine.

[23] Confidential Computing Consortium. 2022. Confidential Computing - Open

Source Community. https://confidentialcomputing.io/.

[24] containerd. 2024. An industry-standard container runtime with an emphasis on

simplicity, robustness and portability. https://containerd.io/.

[25] containerd. 2024. Runtime v2. https://github.com/containerd/containerd/tree/

main/runtime/v2.

[26] Containers. 2024. OCIcrypt - Encryption libraries for OCI container images.

https://github.com/containers/ocicrypt.

[27] Containers. 2024. Skopeo - Work with remote image registries. https://github.

com/containers/skopeo.

[28] Confidential Containers. 2024. Attestation Agent. https://github.com/

confidential-containers/guest-components/tree/main/attestation-agent.

[29] Confidential Containers. 2024. Confidential Containers - Overview.

https://github.com/confidential-containers/confidential-containers/blob/

main/overview.md.

[30] Confidential Containers. 2024. Generic Key Broker Service. https://github.com/

confidential-containers/kbs.

[31] Confidential Containers. 2024. image-rs - Container Images Rust Crate. https:

//github.com/confidential-containers/guest-components/tree/main/image-rs.

[32] Confidential Containers. 2024. Key Broker Client. https://github.com/

confidential-containers/guest-components/tree/main/attestation-agent/kbc.

[33] Confidential Containers. 2024. Welcome to Confidential Containers! https:

//confidentialcontainers.org/.

https://doi.org/10.1145/3552326.3567496
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi20/presentation/agache
https://doi.org/10.1109/IPDPS49936.2021.00115
https://doi.org/10.1109/IPDPS49936.2021.00115
https://doi.org/10.1145/3552326.3567503
https://doi.org/10.1145/3552326.3567503
https://developer.amd.com/sev/
https://developer.amd.com/sev/
https://www.amd.com/system/files/documents/3rd-gen-epyc-gcp-c2d-conf-compute-perf-brief.pdf
https://www.amd.com/system/files/documents/3rd-gen-epyc-gcp-c2d-conf-compute-perf-brief.pdf
https://community.amd.com/t5/epyc-processors/microsoft-azure-confidential-computing-powered-by-3rd-gen-epyc/ba-p/497796
https://community.amd.com/t5/epyc-processors/microsoft-azure-confidential-computing-powered-by-3rd-gen-epyc/ba-p/497796
https://www.antstack.com/blog/how-serverless-is-solving-unstructured-data-problem-for-life-sciences/
https://www.antstack.com/blog/how-serverless-is-solving-unstructured-data-problem-for-life-sciences/
https://wiki.archlinux.org/title/init
https://www.arm.com/technologies/trustzone-for-cortex-a
https://www.arm.com/technologies/trustzone-for-cortex-a
https://aws.amazon.com/blogs/machine-learning/real-time-fraud-detection-using-aws-serverless-and-machine-learning-services/
https://aws.amazon.com/blogs/machine-learning/real-time-fraud-detection-using-aws-serverless-and-machine-learning-services/
https://learn.microsoft.com/en-us/azure/container-instances/container-instances-confidential-overview
https://learn.microsoft.com/en-us/azure/container-instances/container-instances-confidential-overview
https://www.usenix.org/conference/atc21/presentation/bailleu
https://www.usenix.org/conference/atc21/presentation/bailleu
https://lore.kernel.org/qemu-devel/20201214154429.11023-1-jejb@linux.ibm.com/
https://lore.kernel.org/qemu-devel/20201214154429.11023-1-jejb@linux.ibm.com/
https://www.usenix.org/conference/atc23/presentation/brooker
https://www.usenix.org/conference/atc23/presentation/brooker
https://doi.org/10.1145/3342195.3392698
https://cloud.google.com/confidential-computing
https://cloud.google.com/confidential-computing
https://cloud.google.com/compute/confidential-vm/docs/ubiquitous-data-encryption
https://cloud.google.com/compute/confidential-vm/docs/ubiquitous-data-encryption
https://cloud.google.com/learn/what-is-a-virtual-machine
https://cloud.google.com/learn/what-is-a-virtual-machine
https://confidentialcomputing.io/
https://containerd.io/
https://github.com/containerd/containerd/tree/main/runtime/v2
https://github.com/containerd/containerd/tree/main/runtime/v2
https://github.com/containers/ocicrypt
https://github.com/containers/skopeo
https://github.com/containers/skopeo
https://github.com/confidential-containers/guest-components/tree/main/attestation-agent
https://github.com/confidential-containers/guest-components/tree/main/attestation-agent
https://github.com/confidential-containers/confidential-containers/blob/main/overview.md
https://github.com/confidential-containers/confidential-containers/blob/main/overview.md
https://github.com/confidential-containers/kbs
https://github.com/confidential-containers/kbs
https://github.com/confidential-containers/guest-components/tree/main/image-rs
https://github.com/confidential-containers/guest-components/tree/main/image-rs
https://github.com/confidential-containers/guest-components/tree/main/attestation-agent/kbc
https://github.com/confidential-containers/guest-components/tree/main/attestation-agent/kbc
https://confidentialcontainers.org/
https://confidentialcontainers.org/

SESAME ’24, April 22, 2024, Athens,Greece Segarra et al.

[34] Kata Containers. 2023. The speed of containers, the security of VMs. https:

//katacontainers.io/.

[35] Kata Containers. 2024. Kata Agent. https://github.com/kata-containers/kata-

containers/blob/main/src/agent/README.md.

[36] Kata Containers. 2024. Kata Agent API - Github. https://github.com/kata-

containers/kata-containers/blob/CCv0/src/runtime/virtcontainers/kata_agent.

go_L2518-L2531.

[37] Kata Containers. 2024. Kata Containers Architecture. https://github.com/kata-

containers/kata-containers/tree/main/docs/design/architecture.

[38] Kata Containers. 2024. Kata Open Policy Agent. https://github.com/kata-

containers/kata-containers/tree/main/src/kata-opa.

[39] Open Containers. 2023. runc - CLI tool for spawning and running containers

according to the OCI specification. https://github.com/opencontainers/runc.

[40] Open Containers. 2024. OCI Image Format Specification. https://github.com/

opencontainers/image-spec.

[41] DockerHub. 2024. registry - Distribution implementation for storing and dis-

tributing container images and artifacts. https://hub.docker.com/_/registry.

[42] Knative Serving Docs. 2023. Hello World - Python. https://github.com/knative/

docs/tree/main/code-samples/serving/hello-world/helloworld-python.

[43] enclave cc. 2024. Process-based Confidential Container Runtime. https://github.

com/confidential-containers/enclave-cc.

[44] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki Bal-

asubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George

Porter, and Keith Winstein. 2017. Encoding, Fast and Slow: Low-Latency Video

Processing Using Thousands of Tiny Threads. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17). USENIX Association,

Boston, MA, 363–376. https://www.usenix.org/conference/nsdi17/technical-

sessions/presentation/fouladi

[45] Anders Tungeland Gjerdrum, Håvard Dagenborg Johansen, Lars Brenna, and

Dag Johansen. 2019. Diggi: A Secure Framework for Hosting Native Cloud

Functions with Minimal Trust. In 2019 First IEEE International Conference on
Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA).
18–27. https://doi.org/10.1109/TPS-ISA48467.2019.00012

[46] Gramine. 2024. Gramine Project - a library OS for Unmodified Applications.

https://gramineproject.io/.

[47] Brendan Gregg. 2023. Flame Graphs. https://www.brendangregg.com/

flamegraphs.html.

[48] Red Hat. 2024. Attestation in Confidential Computing. https://www.redhat.

com/en/blog/attestation-confidential-computing.

[49] Red Hat. 2024. Confidential computing use cases. https://www.redhat.com/en/

blog/confidential-computing-use-cases.

[50] Red Hat. 2024. Understanding the Confidential Containers Attestation

Flow. https://www.redhat.com/en/blog/understanding-confidential-containers-

attestation-flow.

[51] IBM. 2023. IBM Cloud. https://www.ibm.com/cloud.

[52] IBM. 2023. IBM Cloud Bare Metal Servers. https://www.ibm.com/products/bare-

metal-servers.

[53] Apache Incubator. 2021. Teaclave. https://github.com/apache/incubator-

teaclave.

[54] Intel. 2022. Intel Software Guard Extensions. https://www.intel.co.uk/content/

www/uk/en/architecture-and-technology/software-guard-extensions.html.

[55] Intel. 2024. Intel TDX - CCC Linux Guest Hardening. https://intel.github.io/ccc-

linux-guest-hardening-docs/security-spec.html.

[56] Intel. 2024. Intel Trust Domain Extensions. https://www.intel.com/content/

www/us/en/developer/tools/trust-domain-extensions/overview.html.

[57] Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. 2018. Serving

Deep Learning Models in a Serverless Platform. In IEEE International Conference
on Cloud Engineering, (IC2E).

[58] Zhipeng Jia and Emmett Witchel. 2021. Boki: Stateful Serverless Comput-

ing with Shared Logs. In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles (Virtual Event, Germany) (SOSP ’21). Asso-
ciation for Computing Machinery, New York, NY, USA, 691–707. https:

//doi.org/10.1145/3477132.3483541

[59] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht.

2017. Occupy the Cloud: Distributed Computing for the 99%. InACM Symposium
on Cloud Computing (SOCC).

[60] Artjom Joosen, Ahmed Hassan, Martin Asenov, Rajkarn Singh, Luke Darlow,

Jianfeng Wang, and Adam Barker. 2023. How Does It Function? Characterizing

Long-Term Trends in Production Serverless Workloads. In Proceedings of the
2023 ACM Symposium on Cloud Computing (, Santa Cruz, CA, USA,) (SoCC ’23).
Association for Computing Machinery, New York, NY, USA, 443–458. https:

//doi.org/10.1145/3620678.3624783

[61] David Kaplan. 2016. AMD x86 Memory Encryption Technologies. USENIX

Association, Austin, TX.

[62] David Kaplan. 2023. Hardware VM Isolation in the Cloud: Enabling confidential

computing with AMD SEV-SNP technology. Queue 21, 4 (sep 2023), 49–67.

https://doi.org/10.1145/3623392

[63] Knative. 2024. Knative is an Open-Source Enterprise-level solution to build

Serverless and Event Driven Applications. https://knative.dev/docs/.

[64] Knative. 2024. Knative Serving Architecture. https://knative.dev/docs/serving/

architecture/.

[65] Knative. 2024. Tag Resolution. https://knative.dev/docs/serving/tag-resolution/.

[66] Kubernetes. 2024. CRI - Container Runtime Interface. https://kubernetes.io/

docs/concepts/architecture/cri/.

[67] Kubernetes. 2024. kubelet. https://kubernetes.io/docs/reference/command-line-

tools-reference/kubelet/.

[68] Linux KVM. 2024. Kernel Virtual Machine. https://linux-kvm.org/page/Main_

Page.

[69] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Sameh Elnikety, So-

mali Chaterji, and Saurabh Bagchi. 2022. ORION and the Three Rights: Sizing,

Bundling, and Prewarming for Serverless DAGs. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 22). USENIX Asso-

ciation, Carlsbad, CA, 303–320. https://www.usenix.org/conference/osdi22/

presentation/mahgoub

[70] Linux manual page. 2024. namespaces. https://man7.org/linux/man-pages/

man7/namespaces.7.html.

[71] Microsoft. 2020. Microsoft Azure Attestation. https://docs.microsoft.com/azure/

attestation/overview.

[72] Microsoft. 2022. Microsoft Azure Confidential Computing. https://azure.

microsoft.com/en-gb/solutions/confidential-compute/.

[73] Microsoft. 2023. Inside Look: How Azure Linux powers Confidential Containers

on AKS. https://techcommunity.microsoft.com/t5/linux-and-open-source-

blog/inside-look-how-azure-linux-powers-confidential-containers-on/ba-

p/3981296.

[74] Microsoft. 2024. Azure Functions - Execute event-driven serverless code with

an end-to-end development experience. https://azure.microsoft.com/en-us/

products/functions/.

[75] Nydus. 2024. Nydus - Acceleration Framework For Container Image. https:

//nydus.dev/.

[76] QEMU Options. 2023. RAM. https://wiki.gentoo.org/wiki/QEMU/Options_

RAM.

[77] OVMF. 2024. AMD SEV x64 Package. https://github.com/tianocore/edk2/blob/

master/OvmfPkg/AmdSev/AmdSevX64.dsc.

[78] The Washington Post. 2024. NSA infiltrates links to Yahoo, Google data centers

worldwide, Snowden documents say. https://www.washingtonpost.com/

world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-

worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-

d89d714ca4dd_story.html.

[79] Qemu. 2024. Qemu - A generic and open-source machine emulator and virtual-

izer. https://www.qemu.org/.

[80] Qemu. 2024. QEMU Firmware Configuration Device. https://www.qemu.org/

docs/master/specs/fw_cfg.html.

[81] Quay. 2024. Quay Container Registry. https://quay.io/.

[82] Github Container Registry. 2024. Your packages, at home with their code.

https://github.com/features/packages.

[83] IBM Research. 2024. LPC 2021 - Attestation and Secret Injection for Confidential

VMs, Containers, and Pods. https://lpc.events/event/11/contributions/994/.

[84] Alireza Sahraei, Soteris Demetriou, Amirali Sobhgol, Haoran Zhang, Abhigna

Nagaraja, Neeraj Pathak, Girish Joshi, Carla Souza, Bo Huang, Wyatt Cook,

Andrii Golovei, Pradeep Venkat, Andrew Mcfague, Dimitrios Skarlatos, Vipul

Patel, Ravinder Thind, Ernesto Gonzalez, Yun Jin, and Chunqiang Tang. 2023.

XFaaS: Hyperscale and Low Cost Serverless Functions at Meta. 231–246. https:

//doi.org/10.1145/3600006.3613155

[85] SeaBIOS. 2023. SeaBIOS. https://www.seabios.org/SeaBIOS.

[86] Kaspersky Security. 2024. Downgrade Attack. https://encyclopedia.kaspersky.

com/glossary/downgrade-attack/.

[87] Amazon Web Services. 2024. AWS Lambda - Run code without thinking of

servers or clusters. https://aws.amazon.com/lambda/.

[88] Knative Serving. 2024. Configuring Scale to Zero. https://knative.dev/docs/

serving/autoscaling/scale-to-zero/.

[89] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry, Paul

Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and

Ricardo Bianchini. 2020. Serverless in the Wild: Characterizing and Optimizing

the Serverless Workload at a Large Cloud Provider. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20). USENIX Association, 205–218. https:

//www.usenix.org/conference/atc20/presentation/shahrad

[90] Simon Shillaker and Peter Pietzuch. 2020. Faasm: Lightweight Isolation for

Efficient Stateful Serverless Computing. In 2020 USENIX Annual Technical Con-
ference (USENIX ATC 20). USENIX Association, 419–433. https://www.usenix.

org/conference/atc20/presentation/shillaker

[91] Sigstore. 2024. Cosign - Container Signing. https://github.com/sigstore/cosign.

[92] Brijesh Singh. 2024. [PATCH v9 00/43] Add AMD Secure Nested Paging

(SEV-SNP) Guest Support. https://lore.kernel.org/linux-mm/20220205162249.

4dkttihw6my7iha3@amd.com/t/.

https://katacontainers.io/
https://katacontainers.io/
https://github.com/kata-containers/kata-containers/blob/main/src/agent/README.md
https://github.com/kata-containers/kata-containers/blob/main/src/agent/README.md
https://github.com/kata-containers/kata-containers/blob/CCv0/src/runtime/virtcontainers/kata_agent.go_L2518-L2531
https://github.com/kata-containers/kata-containers/blob/CCv0/src/runtime/virtcontainers/kata_agent.go_L2518-L2531
https://github.com/kata-containers/kata-containers/blob/CCv0/src/runtime/virtcontainers/kata_agent.go_L2518-L2531
https://github.com/kata-containers/kata-containers/tree/main/docs/design/architecture
https://github.com/kata-containers/kata-containers/tree/main/docs/design/architecture
https://github.com/kata-containers/kata-containers/tree/main/src/kata-opa
https://github.com/kata-containers/kata-containers/tree/main/src/kata-opa
https://github.com/opencontainers/runc
https://github.com/opencontainers/image-spec
https://github.com/opencontainers/image-spec
https://hub.docker.com/_/registry
https://github.com/knative/docs/tree/main/code-samples/serving/hello-world/helloworld-python
https://github.com/knative/docs/tree/main/code-samples/serving/hello-world/helloworld-python
https://github.com/confidential-containers/enclave-cc
https://github.com/confidential-containers/enclave-cc
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://doi.org/10.1109/TPS-ISA48467.2019.00012
https://gramineproject.io/
https://www.brendangregg.com/flamegraphs.html
https://www.brendangregg.com/flamegraphs.html
https://www.redhat.com/en/blog/attestation-confidential-computing
https://www.redhat.com/en/blog/attestation-confidential-computing
https://www.redhat.com/en/blog/confidential-computing-use-cases
https://www.redhat.com/en/blog/confidential-computing-use-cases
https://www.redhat.com/en/blog/understanding-confidential-containers-attestation-flow
https://www.redhat.com/en/blog/understanding-confidential-containers-attestation-flow
https://www.ibm.com/cloud
https://www.ibm.com/products/bare-metal-servers
https://www.ibm.com/products/bare-metal-servers
https://github.com/apache/incubator-teaclave
https://github.com/apache/incubator-teaclave
https://www.intel.co.uk/content/www/uk/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.co.uk/content/www/uk/en/architecture-and-technology/software-guard-extensions.html
https://intel.github.io/ccc-linux-guest-hardening-docs/security-spec.html
https://intel.github.io/ccc-linux-guest-hardening-docs/security-spec.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/overview.html
https://doi.org/10.1145/3477132.3483541
https://doi.org/10.1145/3477132.3483541
https://doi.org/10.1145/3620678.3624783
https://doi.org/10.1145/3620678.3624783
https://doi.org/10.1145/3623392
https://knative.dev/docs/
https://knative.dev/docs/serving/architecture/
https://knative.dev/docs/serving/architecture/
https://knative.dev/docs/serving/tag-resolution/
https://kubernetes.io/docs/concepts/architecture/cri/
https://kubernetes.io/docs/concepts/architecture/cri/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://linux-kvm.org/page/Main_Page
https://linux-kvm.org/page/Main_Page
https://www.usenix.org/conference/osdi22/presentation/mahgoub
https://www.usenix.org/conference/osdi22/presentation/mahgoub
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://docs.microsoft.com/azure/attestation/overview
https://docs.microsoft.com/azure/attestation/overview
https://azure.microsoft.com/en-gb/solutions/confidential-compute/
https://azure.microsoft.com/en-gb/solutions/confidential-compute/
https://techcommunity.microsoft.com/t5/linux-and-open-source-blog/inside-look-how-azure-linux-powers-confidential-containers-on/ba-p/3981296
https://techcommunity.microsoft.com/t5/linux-and-open-source-blog/inside-look-how-azure-linux-powers-confidential-containers-on/ba-p/3981296
https://techcommunity.microsoft.com/t5/linux-and-open-source-blog/inside-look-how-azure-linux-powers-confidential-containers-on/ba-p/3981296
https://azure.microsoft.com/en-us/products/functions/
https://azure.microsoft.com/en-us/products/functions/
https://nydus.dev/
https://nydus.dev/
https://wiki.gentoo.org/wiki/QEMU/Options_RAM
https://wiki.gentoo.org/wiki/QEMU/Options_RAM
https://github.com/tianocore/edk2/blob/master/OvmfPkg/AmdSev/AmdSevX64.dsc
https://github.com/tianocore/edk2/blob/master/OvmfPkg/AmdSev/AmdSevX64.dsc
https://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html
https://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html
https://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html
https://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html
https://www.qemu.org/
https://www.qemu.org/docs/master/specs/fw_cfg.html
https://www.qemu.org/docs/master/specs/fw_cfg.html
https://quay.io/
https://github.com/features/packages
https://lpc.events/event/11/contributions/994/
https://doi.org/10.1145/3600006.3613155
https://doi.org/10.1145/3600006.3613155
https://www.seabios.org/SeaBIOS
https://encyclopedia.kaspersky.com/glossary/downgrade-attack/
https://encyclopedia.kaspersky.com/glossary/downgrade-attack/
https://aws.amazon.com/lambda/
https://knative.dev/docs/serving/autoscaling/scale-to-zero/
https://knative.dev/docs/serving/autoscaling/scale-to-zero/
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/atc20/presentation/shillaker
https://www.usenix.org/conference/atc20/presentation/shillaker
https://github.com/sigstore/cosign
https://lore.kernel.org/linux-mm/20220205162249.4dkttihw6my7iha3@amd.com/t/
https://lore.kernel.org/linux-mm/20220205162249.4dkttihw6my7iha3@amd.com/t/

Serverless Confidential Containers: Challenges and Opportunities SESAME ’24, April 22, 2024, Athens,Greece

[93] UEFI Platform Initialization Specification. 2023. Driver Execution Environment

(DXE) Phase. https://uefi.org/specs/PI/1.8/V2_Overview.html.

[94] Edgless Systems. 2024. The world’s most secure Kubernetes. https://www.

edgeless.systems/products/constellation/.

[95] Tianocore. 2024. OVMF - Open Virtual Machine Firmware. https://github.com/

tianocore/tianocore.github.io/wiki/OVMF.

[96] Bohdan Trach, Oleksii Oleksenko, Franz Gregor, Pramod Bhatotia, and Christof

Fetzer. 2019. Clemmys: Towards secure remote execution in FaaS. In Proceedings
of the 12th ACM International Conference on Systems and Storage.

[97] VirTEE. 2024. Calculate AMD SEV/SEV-ES/SEV-SNP measurement for confi-

dential computing. https://github.com/virtee/sev-snp-measure.

[98] VMWare. 2024. Introduction to vSockets. https://vdc-repo.vmware.com/vmwb-

repository/dcr-public/a49be05e-fa6d-4da1-9186-922fbfef149e/a65f3c51-aaeb-

476d-80c3-827b805c2f9e/doc/vsockAbout.3.2.html.

[99] Jinpeng Wei and Calton Pu. 2005. TOCTTOU Vulnerabilities in UNIX-

Style File Systems: An Anatomical Study. In 4th USENIX Conference on
File and Storage Technologies (FAST 05). USENIX Association, San Francisco,

CA. https://www.usenix.org/conference/fast-05/tocttou-vulnerabilities-unix-

style-file-systems-anatomical-study

[100] Xingda Wei, Fangming Lu, Tianxia Wang, Jinyu Gu, Yuhan Yang, Rong Chen,

and Haibo Chen. 2023. No Provisioned Concurrency: Fast RDMA-codesigned

Remote Fork for Serverless Computing. In 17th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 23). USENIX Association, Boston, MA,

497–517. https://www.usenix.org/conference/osdi23/presentation/wei-rdma

[101] AMD Whitepaper. 2024. AMD SEV-SNP: Strengthening VM Isolation with

Integrity Protection and More. https://www.amd.com/content/dam/amd/en/

documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-

isolation-with-integrity-protection-and-more.pdf.

[102] Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa, Joseph E.

Gonzalez, and Ion Stoica. 2017. Opaque: An Oblivious and Encrypted Distributed

Analytics Platform. In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17). USENIX Association, Boston, MA, 283–298. https:

//www.usenix.org/conference/nsdi17/technical-sessions/presentation/zheng

https://uefi.org/specs/PI/1.8/V2_Overview.html
https://www.edgeless.systems/products/constellation/
https://www.edgeless.systems/products/constellation/
https://github.com/tianocore/tianocore.github.io/wiki/OVMF
https://github.com/tianocore/tianocore.github.io/wiki/OVMF
https://github.com/virtee/sev-snp-measure
https://vdc-repo.vmware.com/vmwb-repository/dcr-public/a49be05e-fa6d-4da1-9186-922fbfef149e/a65f3c51-aaeb-476d-80c3-827b805c2f9e/doc/vsockAbout.3.2.html
https://vdc-repo.vmware.com/vmwb-repository/dcr-public/a49be05e-fa6d-4da1-9186-922fbfef149e/a65f3c51-aaeb-476d-80c3-827b805c2f9e/doc/vsockAbout.3.2.html
https://vdc-repo.vmware.com/vmwb-repository/dcr-public/a49be05e-fa6d-4da1-9186-922fbfef149e/a65f3c51-aaeb-476d-80c3-827b805c2f9e/doc/vsockAbout.3.2.html
https://www.usenix.org/conference/fast-05/tocttou-vulnerabilities-unix-style-file-systems-anatomical-study
https://www.usenix.org/conference/fast-05/tocttou-vulnerabilities-unix-style-file-systems-anatomical-study
https://www.usenix.org/conference/osdi23/presentation/wei-rdma
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zheng
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zheng

	Abstract
	1 Introduction
	2 Confidential Serverless Computing
	2.1 The Need for Confidential Serverless
	2.2 Design Space for Confidential Serverless

	3 CC-Knative: Knative on CoCo
	3.1 Integration with K8s
	3.2 Starting a Knative Service in CC-Knative

	4 Evaluation
	4.1 End-to-end Start-Up Latency
	4.2 Cold Starts
	4.3 Warm Starts
	4.4 Scale-Out Latency

	5 Open Challenges
	6 Conclusions
	Acknowledgments
	References

