
A Novel Framework for the Analysis of Unknown
Transactions in Bitcoin: Theory, Model, and

Experimental Results
Maurantonio Caprolu∗, Matteo Pontecorvi†, Matteo Signorini†, Carlos Segarra‡ and Roberto Di Pietro∗

∗Division of Information and Computing Technology, College of Science and Engineering
Hamad Bin Khalifa University, Qatar Foundation - Doha, Qatar

†NOKIA Bell Labs - 91620 Nozay, France
‡Imperial College, London, UK

Abstract—Bitcoin (BTC) is probably the most transparent
payment network in the world, thanks to the full history of
transactions available to the public. Though, Bitcoin is not a fully
anonymous environment, rather a pseudonymous one, accounting
for a number of attempts to beat its pseudonimity using clustering
techniques. There is, however, a recurring assumption in all the
cited deanonymization techniques: that each transaction output
has an address attached to it. That assumption is false. An
evidence is that, as of block height 591,872, there are several
millions transactions with at least one output for which the
Bitcoin Core client cannot infer an address.
In this paper, we present a novel approach based on sound
graph theory for identifying transaction inputs and outputs. Our
solution implements two simple yet innovative features: it does
not rely on BTC addresses and explores all the transactions
stored in the blockchain. All the other existing solutions fail
with respect to one or both of the cited features. In detail, we
first introduce the concept of Unknown Transaction and provide
a new framework to parse the Bitcoin blockchain by taking
them into account. Then, we introduce a theoretical model to
detect, study, and classify—for the first time in the literature—
unknown transaction patterns in the user network. Further, in
an extensive experimental campaign, we apply our model to the
Bitcoin network to uncover hidden transaction patterns within
the Bitcoin user network. Results are striking: we discovered
more than 30, 000 unknown transaction DAGs, with a few of
them exhibiting a complex yet ordered topology and potentially
connected to automated payment services. To the best of our
knowledge, the proposed framework is the only one that enables
a complete study of the unknown transaction patterns, hence
enabling further research in the fields—for which we provide
some directions.

I. INTRODUCTION

Known as the first successful virtual currency with the po-
tential to disrupt the banking system and provide peer-to-peer
payments, Bitcoin has been widely adopted in ransomware
campaigns such as Wannacry [40] and NotPetya [38]. The
main reasons being the relative diffusion of Bitcoin, as well as
privacy. Privacy is easily achievable with Bitcoin pseudonyms
in the form of randomly generated addresses that can be
used to send/receive money without being linked to any real
identity.

Being organized into wallets, Bitcoin’s addresses can be
easily and freely self-generated by end-users (neither banks
nor trusted third parties are needed) without any limitation
on their number. Indeed, using each address for a single
transaction is a strongly advised common practice in the
Bitcoin community and has always been its key component
in providing privacy, since the resulting transactions’ network
has always been assumed too complex to track money flows.

Such “privacy through complexity” approach has been en-
hanced in the last years by online services such as mixers
and tumblers. Similar to the TOR project [19], aimed at
concealing user’s location and network activities from anyone
conducting network surveillance or traffic analysis, mixers and
tumblers try to conceal users’ addresses that took part in some
monetary transactions. The functioning of such services is
quite simple and, similarly to TOR, they require to bounce
bitcoins through peers in order to make their tracking hard.
Furthermore, the bitcoins that are bounced and returned to the
user are not the same that were initially sent, since they come
from other sources (i.e. other addresses). However, during the
last few years, it has been shown that the above “privacy
through complexity” approach can be attacked by clustering
the addresses into groups that are likely to belong to the same
entity (a user, a shop, a mixer etc.). In 2015, David Nick
described [34] some of the most famous heuristics being used
still to date for Bitcoin address clustering, such as the shadow,
consumer, optimal-change, and multi-input. These heuristics,
applied to transactions data previously extracted from the
blockchain using parsing algorithms, produce in output the
clustered user network.

All such parsing algorithms suffer from the cognitive bias
that Bitcoin transactions are just operations that link one
address to another [1], [27]. However, such address-based
linkability is not enforced directly in the Bitcoin protocol: the
protocol only verifies that the locking and unlocking scripts
do not produce any false statement [2]. This cited bias is also
reinforced by the fact that most of the locking and unlocking
scripts follow a specific pattern based on asymmetric en-
cryption using randomly generated addresses. However, such

ar
X

iv
:2

10
3.

09
45

9v
1

 [
cs

.C
R

]
 1

7
M

ar
 2

02
1

a pattern is not mandatory. Consequently, transactions data
parsed relying only on recognizable locking/unlocking scripts
risk to be incomplete, and they often are. This incompleteness,
in turn, causes a loss of reliability in all modern clustering and
de-anonymization techniques. Moreover, intentionally crafted
custom transactions could be used to hide illicit money flows,
while being completely invisible to modern automatic parsers
unable to decode output addresses. As an evidence, note that
up to block with height 591,872, Bitcoin’s blockchain contains
more than 22 million transactions with at least one locking
script (or output) not following any well-known locking/un-
locking script. We will often refer to these outputs as unknown
transaction outputs.

A. Contribution

Our contributions are both theoretical and applied. At
glance, we are the first, to the best of our knowledge, to
provide a navigation tool within the Bitcoin blockchain that:
does not rely on addresses and explores all the transactions
stored in the blockchain. In detail, our contributions can be
summarized as follow:
• we introduce the general concept of unknown transac-

tions, subsuming the less rigorous definition of non-
standard transactions provided by the Bitcoin protocol;

• we extend the definition of user network U by including
unknown transactions;

• we design a novel (theoretically sound) parsing method-
ology to study, and likely understand for the first time,
unknown transaction patterns by using a specific class of
graphs called T-DAGs;

• we show that T-DAGs can be efficiently compared via
isomorphism, offering a new mechanism for clustering
similar transaction patterns.

• we test our algorithms over the Bitcoin network, collect-
ing and analysing all unknown transactions in the ledger
from Bitcoin origins until block 591,872;

• we further refine our results by removing trivial non-
standard transactions already observed in the literature,
revealing classes of hidden unknown transaction patterns
never considered before;

• to the best of our knowledge, this is the first study of
the Bitcoin transaction network which includes unknown
transactions.

With reference to the Bitcoin context, our contribution
can be used to collect and observe the existing unknown
transaction patterns in the ledger, as well as those that
will be generated in the future. These patterns, previously
ignored by any transactions analysis work, can be used to
complete the user network U and the transaction network
T . Our methodology can be applied to any clustering and
de-anonymization technique to improve its effectiveness
by leveraging a complete and reliable Bitcoin transactions
database. Moreover, our novel solution can be extended
immediately to any other system where transaction patterns
can be modeled using T-DAGs.

Organization: The rest of the paper is organized as follows.
In Section II we introduce preliminary concepts used in the
paper. In Section III we summarize the state of the art for
Bitcoin addresses clustering and graph isomorphism problem.
In Section IV we define our theoretical model capable of
extending user network in order to identify those sub-graphs
that involve unknown transactions. In Section V, we describe
the application of our theoretical model to the Bitcoin net-
work, discussing the results achieved during our experimental
evaluation. Finally, in Section VI we summarize our results,
discuss the possible implications, and suggest future research
lines.

II. BACKGROUND

A. Preliminaries

Let G = (V,E) be a graph with nodes V and edges E.
We will consider both undirected graphs with E ⊆

(
V
2

)
, and

directed graphs with E ⊆ V × V . An undirected graph G is
said to be connected if, for any u, v ∈ V , there is a path from u
to v. In a directed graph, edges are sometimes called arcs and
the first vertex of an arc is referred to as the tail and the second
one as the head. Given a directed graph D = (V,E), the
underlying graph G = (V,E′) is the undirected graph obtained
with the same vertex set and an edge set corresponding of
each arc in E. That is, if (u, v) is an arc in D then both
(u, v) and (v, u) are edges in G. A directed graph is weakly
connected if the underlying graph is connected. From now on,
we will always refer to directed graphs and use edges and arcs
interchangeably.

For an edge e = {u, v} ∈ E, we say that u is adjacent to v,
and vice-versa. If there exists a sequence of edges connecting
two vertices u and v, we say that these two vertices are
reachable. If u is reachable starting from itself (through a non-
empty sequence of edges) we say G contains a cycle. If G
contains no cycles, G is said to be acyclic. We call directed
acyclic graphs DAGs. A tree is an undirected, connected,
and acyclic graph. We use Kx,y to indicate the complete
bipartite graph between two sets of nodes X and Y with
|X| = x and |Y | = y. Given a vertex v ∈ V , v’s indegree,
Γ−(v), is the cardinal of edges (or arcs) that have v as its
head. Symmetrically, v’s outdegree, Γ+(v), is the cardinal of
edges (or arcs) that have v as its tail. We call a vertex with
zero indegree a source, and one with zero outdegree a sink.
Given two graphs G1 = (V1, E1) and G2 = (V2, E2), an
isomorphism is a bijection function f(.) between the sets of
vertices, V1 and V2, such that it maintains adjacency. That
is, (u1, u2) ∈ E1 ⇒ (f(u1), f(u2)) ∈ E2. A graph labeling
is the assignment of labels to the vertices, edges, or both,
of a graph. Given a graph G, a canonical form is a labeled
graph Ḡ, isomorphic to G, such that H is isomorphic to G
iff Ḡ = H̄—i.e, they have identical canonical forms. An
equivalence relation ∼, is a binary relation on a set S that is: (i)
reflexive; (ii) symmetric; and, (iii) transitive. For any elements
a, b and c in S it holds: (i) a ∼ a, (ii) a ∼ b⇒ b ∼ a and (iii)
a ∼ b∧ b ∼ c⇒ a ∼ c. An equivalence relation, ∼, partitions
a set in equivalence classes. A total ordering, ≺, is a binary

2

relation on a set S that is: (i) antisymmetric; (ii) transitive; and,
(iii) connex. That is, ∀a, b, c ∈ S: (i) a ≺ b ∧ b ≺ a⇒ a = b;
(ii) a ≺ b ∧ b ≺ c⇒ a ≺ c; and, (iii) a ≺ b ∪ b ≺ a.

B. Bitcoin Transaction Network and User Network

The Bitcoin network is composed by peers which can
be either full nodes or clients, with full nodes validating
transactions and blocks [10]. The Bitcoin protocol stores every
transaction in a publicly distributed ledger, thus allowing
everyone to read the transactions occurred among Bitcoin
users. To ease the analysis of the money flow contained in the
Bitcoin ledger, the Bitcoin data-set can be modeled with two
different graphs (Transaction and User Network) as introduced
in [37].
The Transaction Network T describes the Bitcoin flow be-
tween transactions over time [32]. Each node represents a
transaction, and each directed edge between two nodes n1 and
n2 represents a money flow that is an output for n1 and an
input for n2. The network is a directed acyclic graph (DAG)
since the output of a transaction can never be an input (either
directly or indirectly) to the same transaction.
The User Network U describes the Bitcoin flow between users
over time [28]. Each node represents a Bitcoin user, and each
directed edge between two nodes n1 and n2 represents an
inputs-outputs pair of a single transaction, where the inputs
belongs to n1 and the outputs belongs to n2. More in detail, the
User Network is a weighted directed hypergraph U = (A, T)
where A is the set of all the addresses used in the Bitcoin
network, and T is the set of transactions. Every transaction
t ∈ T can be modeled as a pair of ordered sets (X,Y) with
X,Y ⊆ A , where addresses included in X are inputs of t
and addresses in Y are outputs of t.

III. RELATED WORK

To the best of our knowledge, very few works have in-
vestigated unknown transactions in the Bitcoin ledger. In [7],
the authors analyzed 1,887,708 transactions containing the
OP_RETURN instruction. They found that 15% of them are
empty transactions, generated by different activities on the
Bitcoin network, such as stress tests or DoS attacks. The
remaining transactions are not empty but, similarly to the
previous ones, they are not used for transferring funds. In
fact, they have a different, specific goal: to store data in the
Bitcoin ledger. The OP_RETURN transactions do not have
a valid recipient, since they are not used to transfer funds.
Therefore, they cannot be redeemed. For this reason, these
transactions are not of particular interest for clustering and
de-anonymizing techniques of Bitcoin users, i.e., they are
present neither in T nor in U . A more in-depth analysis of
non-standard transactions in the Bitcoin network has been
proposed in [8]. The authors explored the ledger collecting
and classifying both standard and non-standard transactions
to understand why users sometimes do not adhere to the
protocol. To achieve this goal, they mainly focus on analyzing
non-standard transactions, classifying them into nine different
typologies.

Although these studies analyzed some non-standard transac-
tions, their purpose is only to analyze the semantic, consid-
ering every transaction as a stand-alone object. Consequently,
such transactions are still ignored in the construction of both
the user network U and the transaction network T , leading to
incomplete and possibly unreliable data structures. To solve
this problem, we first collected all the unknown transactions
in the Bitcoin ledger, regardless of their semantic. We then
focused on those that have a valid locking script as they have
an impact on the de-anonymization and clustering techniques,
neglected by all previous works in the field (see a summary
in Section III-A). By using the proposed methodology, our
framework is able to correctly parse unknown transactions,
identify their patterns, and complete the user network U
and the transaction network T with additional data never
considered before.

A. Bitcoin Addresses Clustering

Recently, security properties of blockchain-based protocols,
with particular attention on the Bitcoin network, received
increasing attention [12], [15], [16], [22], [24]. Among the
different topics covered, several methods have been proposed
to cluster bitcoin addresses [17]. These contributions build U
by applying different heuristics to T . The most used heuristic,
the Common Input, is based on the observation that all
the inputs of a multi-input transaction belong to the same
user [37]. This heuristic has been used to cluster Bitcoin
addresses with the aim of deanonymizing users by using off-
chain data [25] and study the Bitcoin network to uncover
different properties [23], [27], [35]. Later, a more advanced
heuristic called One-time Change was introduced [1],
[14], [31], [39], based on the detection of the change among
the output addresses.

All of these approaches built the transaction network T
and the user network U by parsing the Bitcoin blockchain
using the reference implementation (i.e. Bitcoin Core) or
other blockchain explorer software. As explained in Sec-
tion IV-A, current parsing algorithms, due to some incomplete
assumptions, do not consider unknown transactions, providing
incomplete and in some cases incorrect data to clustering and
deanonymization algorithms.
Table I shows a comparison between the p0roposed solution
and: (i) the Bitcoin reference implementation, i.e., Bitcoincore;
(ii) blockchain explorer services, represented by the most
popular one, blockchain.com; (iii) other platforms to analyze
the Bitcoin blockchain, e.g., Blocksci; and, (iv) the most
representative contributions in the literature that already used
the user network U or the transaction network T .

B. Graph Isomorphism

The graph isomorphism (GI) problem consists in determin-
ing whether given two graphs G and V there exists a bijection
between both sets of vertices that preserves adjacencies. The
lowest time bound for general GI stood since 1983 and until
very recently at expO

(√
n log n

)
[5]. However, polynomial

time algorithms have long been known for different families of

3

Solution Objective Unknown Transactions Considered Ledger Portion
Parser Clustering Considered Study of Patters From Block To Block

Blocksci [21] 3 3 7 7 0 custom
Blockchain.com 3 3 7 7 0 last mined block

Bitcoincore 3 7 7 7 0 last mined block
[37] 7 3 7 7 0 130367
[1] 3 3 7 7 0 140000
[31] 3 3 7 7 0 231207
[23] 7 7 7 7 0 235000
[39] 3 3 7 7 0 267350
[27] 7 3 7 7 0 389799
[7] 7 7 3 7 0 453200
[14] 7 3 7 7 0 456520

Our Solution 3 3 3 3 0 591872

Table I: Comparison of our solution with popular parsers and state-of-the-art clustering techniques.

graphs. Among others, for graphs with bounded valence, the
first polynomial time test dates from 1980 [26]. This work was
used to solve the problem for graphs with bounded eigenvalue
multiplicity [4] in O

(
n4m+c

)
. For circulant graphs, a O(n2)

testing algorithm is known [33]. The tree isomorphism prob-
lem was proven [18] to be linear in the number of vertices,
that is, two trees T1 and T2 can be tested for isomorphism
in O(n) comparing them in a bottom-up fashion. A result
from 2016 [3] improved the 1983 bound for the GI problem
to quasipolynomial time. The author proved an upper bound
of exp (log n)

O(1) for testing wether two arbitrary graphs are
isomoprphic or not.

A possible test of graph isomorphism is performed through
canonical forms and canonical labelings. A canonical form of
a graph is a representative of a class of graphs closed under
isomorphisms, and with a linearly ordered vertex set [6]. That
is, two graphs are isomorphic if and only if they yield the same
canonical form. A canonical labeling is a string derived from a
canonical form of a graph obtained through a defined mapping.
The problem of obtaining canonical labelings for general
graphs remains quasi-exponential in the number of vertices.
A combinatorial method that runs in expn2/3 + o(1) has long
been known [6]. In the same paper the authors give a procedure
to compute the canonical form of graphs of bounded valence
(or degree) in polynomial time. Due to its relevant applications
and the urge for practical solutions, implementations of graph
canonization packaged in different software has proven to
be successful. The McKay canonical labeling algorithm [30]
packaged in the nauty software is one of the most cele-
brated solutions. It was the most popular solution from the
early 80s until 2004, when a modern re-implementation [13],
saucy, was introduced. Exploiting symmetry and sparsity in
the search space pruning the latter managed to outperform
the former by several orders of magnitude. The refinements
later introduced in bliss [20] concluded in the release of
Traces. The definition of the latter piece of software together
with a comparison of all the software packages presented is
discussed by its authors in [29].

When restricting the problem to rooted or un-rooted trees,
linear is the best possible sequential runtime [18]. However,
tree canonization has been proven to be in alternating loga-
rithmic time [11]. The labeling therein defined is depth-first

and the approach presented in this paper is breadth-first. In
spite of that, the ordering relation we define is based on the
same principles. However, a more recent approach [41] for tree
canonical labeling uses a breadth-first approach. The authors
therein do provide a less verbose labeling (at most 3n) than
ours, but this is due to the fact that they deal with specialized
trees: ones where each vertex has an in-degree of at most 1.

IV. UNKNOWN TRANSACTIONS RECOGNITION

In this section, we introduce the general concept of unknown
transactions, their classification, and the theoretical model to
identify patterns within unknown transactions.

A. Unknown Transactions and Working Framework

The Bitcoin protocol provides its community with standard
templates that must be used to create the locking and un-
locking scripts that make up a transaction. The use of such
templates is then enforced by miners using two functions,
isStandardTx() and isStandard(), which check the compliance
of each transaction’s inputs and outputs, respectively. In fact,
a transaction is considered standard, and therefore accepted
by the network, only if both functions return TRUE. If even
one of them returns FALSE, the transaction is considered non-
standard and discarded. This mechanism should prevent any
use of Bitcoin transactions other than the ones conceived by
the protocol, to avoid the spread of malicious transactions.
However, even non-standard transactions can be included in
the blockchain, thanks to miners who relax these controls [8].
Similar to the concept of non-standard transaction, we define
unknown transactions as follow:

Definition 1 (Unknown Transaction)
We call a transaction (TX) unknown if it contains an input
or an output with a Null value address, i.e. not correctly
identified by the Bitcoin Core client.

This definition embraces a set of Bitcoin transactions, of
which non-standards are currently a subset, regardless of what
the protocol considers standard or non-standard. The concept
of unknown transactions allows us to protect our framework
from future variations of the Bitcoin protocol and guarantees
compatibility with other systems.
Among unknown TXs, we are only interested in transactions

4

whose output contains a Null address. This is because the
address of an input is unequivocally determined by that of
the output that it is spending. Hence, resolving the address
of the output is equivalent to resolving the address of the
associated input as well. Additionally, an input only exists
to fund the outputs contained in its corresponding transaction.
Thus, there is no such thing as an address for an input as it
does not belong to someone. However, for simplicity, we agree
to assign to an input the same address held by the output that it
is spending. To unambiguously process the list of transaction
hashes, we need to uniquely identify inputs and outputs. This
is done using the Unique Transaction Input-Output Identifier,
introduced below in Definition 2. But, before introducing such
an Fidentifier, we motivate why it is required by our approach.

For elaborated blockchain analysis, it is a good idea to
initially parse all the data from a running miner and, once
the data is organized in a more accessible manner, apply
further and more complex post-processing. However, we have
discovered several imprecisions in the blockchain’s parsing
process:
(i) Excess of abstraction Blockchain parsers such as

BlockSCI [21] introduce a completely new level of ab-
straction over the one already specified in the reference
implementation [9]. Defining new wrappers, lots of differ-
ent classes, and incomplete references can make a parser
difficult to use and debug. Additionally, we discovered
that, in the particular case of BlockSCI, there are errors
in their parsing methodology;

(ii) Excess of identifiers Bitcoin’s blockchain is an environ-
ment based on uniqueness. Every item must be uniquely
identified and hashing algorithms already provide a way
to do so. However, some parsers [21] insist on giving
an alternative enumeration for transactions and addresses.
This makes databases harder to navigate and makes it
non-intuitive to mimic the client’s behavior or debug the
processed data;

(iii) Using Public Keys as Identifiers As introduced in Sec-
tion I, to the best of our knowledge, existing works [1],
[27], clustering Bitcoin Addresses to find real end-users,
assume that each transaction output must have an address
assigned to it. This is false. In fact, up to block with
height 481823, Bitcoin’s blockchain contains 3255688
unknown transactions.

Given the above problems, our proposed framework aims
to provide a reference for storing Bitcoin’s data in a database;
minimizing the amount of abstraction involved, reusing when-
ever possible the identifiers provided by the reference imple-
mentation, and keeping the structure simple and clear.

To be consistent with both (i) and (ii), we only introduce
the critical functionalities not covered by the Bitcoin core 1.
This way, parsers using our framework can be easily compared
against each other, the Bitcoin Core Client, or even web
explorers. Further layers of abstraction depending on the

1The core client cannot find which transaction input is spending a given
unspent output.

application should be detached from the parsing phase to
avoid situations where complex post-processing is discredited
by incorrect data parsing. This means that all non-relevant
information for blockchain navigation is not included in the
framework.

The Framework Our framework uses only minimal ab-
straction and provides a robust, reliable, and fast way to
navigate through the Bitcoin’s blockchain. It is also easily
portable: all applications that query or do some sort of post-
processing with Bitcoin’s data can use it. To fulfill these
conditions and to preserve minimality, only the necessary
attributes are included. All other features included in the
reference implementation, that provide key information about
each transaction, but do not improve the exploration of the
blockchain, are discarded. In fact, they can be easily obtained
by using the identifiers provided by our framework, together
with any Bitcoin client.

We present a database layout that only contains two types
of entities: block and tx.
(i) block: represents a block in the blockchain. It is

uniquely identified by two parameters: hash and
height. Both the parameters can be used to retrieve
a block element from the database without ambiguity.
Each block element has an additional parameter, tx. tx
is an array of hashes, each one referencing a transaction
included in the block (see next item for a description on
the tx entity). Each element in the array can be uniquely
identified, and accessed, by the index of their position
within the array. This way, the m-th transaction of the
n-th block can be identified without uncertainty;

(ii) tx: represents a confirmed transaction (TX) in the
blockchain. Since the Bitcoin’s ledger contains different
cases of transactions with the same hash2, this attribute
cannot be used as a unique identifier. We realized that the
Bitcoin Core client still uses the hash attribute to uniquely
identify a transaction, causing a loss of information:
searching for a particular transaction hash, the Core
client returns only the last occurrence of that hash in
the ledger. As a result, any transaction stored in the
blockchain with a hash equal to a more recent transaction
will never be returned by the client. For this reason,
we uniquely identify a transaction using its attribute pair
<blockhash, hash> which represents the hash of the
block they belong to and its hash, respectively. The vin
attribute is an array of pairs <txID, txID[vout]>.
It represents the set of inputs contained in the transaction.
Each input can be uniquely identified by their index
within the transaction input array 3. The txID attribute
from the pair is the hash attribute of the TX that contains
the output that the input is spending and txID[vout] is
the index of the spent output within the TX that contains

2Blocks 91812 and 91842 contain a transaction with hash:
“d5d27987d2a3dfc724e359870c6644b40e497bdc0589a033220fe15429d88599”.

3Since inputs do not have a global unique identifier, and since the reference
client implementation does not define input entities, we have chosen not to
do so either.

5

it. Symmetrically, the vout attribute is an array of pairs
<txID, txID[vin]> where, if the output is spent by
some input in the future, the TX hash, and the index
within the transaction where the output is spent, are
included. If the TX is unspent, both attributes are set
to null. Each output can be uniquely identified through
the hash of the transaction they are contained in and their
index in the output array (tx.vout).

The above introduced structure leads to Definition 2, which
we will use often in the rest of the paper.

Definition 2 (TIO)
A Unique Transaction Input-Output (TIO) is an identifier that
can uniquely identify all the inputs and outputs contained in
confirmed transactions within the blockchain. We denote the
set of all inputs and outputs as < TIO >.

A first contribution of our framework is the possibility to
travel to the future in the blockchain. This allows us to easily
identify the paths followed by bitcoins through the blockchain
history. Definition 3 formalizes some new terminology related
to our traveling mechanism.

Definition 3 (Traveling the Blockchain)
Given a TIO, we define the current terms:

(i) If the TIO corresponds to an Input:
(a) The spending output of TIO refers to the output

that this input is using;
(b) The funded outputs of TIO refers to the outputs

that this input is providing bitcoins to. By Bitcoin design,
we assume that the funded outputs for an input are all
the outputs contained in the same transaction than the
input.

(ii) If the TIO corresponds to an Output:
(a) The spending inputs of TIO are all the inputs

that funded this output. By Bitcoin design, we assume that
all the spending inputs for an output are all the inputs
contained in the same transaction than the output.

(b) If the output is spent, the funded input is the
input that is spending the output. Note that, this input
will appear in a more recent transaction than the one
containing the output.

A brief summary of the data structure used in our framework
is provided in Table II.

Locking Script: In addition to its TIO, we are also interested
in the locking script for an output. By locking script, we refer
to the script that has to be redeemed in order to spend the
output. In the Bitcoin Core reference implementation, it is
referred as scriptPubKey.
In the later stages of our methodology, we will use TIOs
to build the Unknown TX T-DAGs. Instead, the locking
scripts will be used to filter our results by removing T-DAGs
generated by transactions with purposes other than the transfer
of crypto coins.

Table II: Summary table of our data structure.
block tx

∗ hash ∗ hash
∗ height + blockhash

+ tx := [+ hash]<n>(∗) + vin :=

[
+ txID

+ txID[vout]

]
<n>(∗)

+ vout :=

[
+ txID

+ txID[vin] (#)

]
<n>(∗)

Legend:
∗ := Attribute is a unique identifier for the entity.
+ := Attribute of a given entity.

:= New attributes that do not appear in the reference implementation.

[· · ·]<n>(∗) := Array of elements with the attributes specified between brackets.
These elements can be uniquely identified within their container by their position
in the array (indexed by an integer n).

B. Unknown TX T-DAG Construction

In this section, we lay the blockchain data in a graph
using the framework defined in IV-A, introduce the concept
of Unknown TX graphs and study the derived T-DAGs. The
study of these directed graphs will enable us to describe, tailor
and identify unknown transaction patterns on the Blockchain.

Definition 4 (TIO graph)
Let < TX > be the set of confirmed transactions in the
blockchain. Let GTIO = (V,E) be a directed unweighted graph
such that:
(i) V = < TIO >

(ii) E =

 ⋃
t∈<TX>

E (K|It|,|Ot|
) ⋃
o∈Ot

o 6∈UTXO

(o, gFI(o))




where gFI returns the funded input of a given output, given a
transaction t, It and Ot denote t’s set of inputs and outputs
respectively, and UTXO is the unspent transaction output store.

Lemma 1. The TIO graph, GTIO, is a directed acyclic graph
(DAG).

Proof. Nodes in the graph represent validated inputs or outputs
in the blockchain. This means that, when they were broadcast
to the network, each miner checked them. For an input or an
output to be validated, they must always point to an event
that happened in the past. Each edge then goes from an event
that happened further in the past to a more recent one. This
timestamp characteristic is sufficient to ensure that there are
no cycles.

Definition 5 (α-nodes)
An α-node is a set of vertices S from GTIO such that, exists a
transaction T such that its set of inputs IT = S and
(i) S is a coinbase4 transaction, or

(ii) ∃ s ∈ S such that s is spending an output with a BTC
Address.

Remark 1. For each transaction T , its set of inputs IT fulfills:

4A coinbase transaction is a special transaction in the Bitcoin protocol
creating new coins as mining rewards [2].

6

(i) IT is an α-node, or
(ii) ∀s ∈ IT , s is spending an output with a None address.

The introduction of α-nodes and the previous remark iden-
tifies a natural contracted graph of GTIO.

Definition 6 (Contracted TIO graph)
The Contracted TIO graph, G∗TIO, is the graph resulting of
applying the following two transformations to GTIO:

(i) Identify (contract) all vertices [36] in an α-node. Repeat
for each different α-node contained in GTIO.

(ii) For each transaction T fulfilling the second condition in
Remark 1,

(a) for each spending output o of each input in IT ,
add an edge from o to each output in T.

(b) remove every vertex in IT , as well as its inbound
and outbound edges.

Remark 2. The transformations applied to GTIO do not
introduce cycles and, as a consequence, G∗TIO is also a DAG.

To define the subgraphs in the TIO graph relevant for our
research, we still have to introduce some more concepts.

Definition 7 (Termination application)
Let f be a function, f : < TIO >−→ {0, 1} defined as
follows:

f(x) =

{
0 if x’s address is None
1 otherwise

Given a weakly connected single-source DAG, we call all
nodes that are not the source nor sinks internal nodes.

Definition 8 (Unknown TX graph)
An Unknown TX graph is a single-source, weakly connected,
maximal induced subgraph of G∗TIO such that:

(i) The source s is an α-node.
(ii) Each sink t fulfills f(t) = 1.

(iii) Each internal node v fulfills f(v) = 0.

Unknown TX graphs will be our object of study for the rest
of the paper. From their construction, we observe the following
points.

Definition 9 (T-DAG)
A T-DAG is a single-source directed unlabeled acyclic weakly
connected graph.

Remark 3. Lemma 1 and Remark 2 prove that an Unknown
TX graph is a T-DAG.

From now on, we will refer to Unknown TX graphs as
Unknown TX T-DAGs5.

Remark 4. If we fix a source s, then there exists only one
Unknown TX T-DAG with s as its root. We can then denote
as G(s) the Unknown TX DAG generated by a given root s.

5Unlike trees, a vertex in a T-DAG may have more than one parent.

Definition 10 (Set of Unknown TX T-DAGs)
We define the set of Unknown TX T-DAGs, D, as follows:

D = {G(s) : s is an α-node and G(s) has at least two vertices}

Algorithm 1 presents a procedure to generate the Unknown
TX T-DAG given an α-node s. An example of an Unknown

Algorithm 1 Unknown TX T-DAG Generation from its root.

1: procedure T-DAG GENERATION(s)
2: G← Graph()
3: S ← Stack()
4: G.addNode(s)
5: for all tx out in getFundOutput(s) do
6: G.addNode(tx out)
7: G.addEdge(s, tx out)
8: S.push(tx out)
9: while ! S.isEmpty() do

10: tx out← S.pop()
11: if ! f(tx out) then
12: tx in← getFundInput(tx out)
13: for all new out in getFundOutput(tx in) do
14: G.addNode(new out)
15: G.addEdge(tx out, new out)
16: S.push(new out)

TX DAG is presented in Figure 1. Note that, we attach the
associated address for each node.

Fig. 1: Representation of an Unknown TX T-DAG.

T-DAG Compression: Before any further processing of the
Unknown TX T-DAGs, we are interested in pruning the inner
nodes that were published to the blockchain without a locking
mechanism. These are trivial locking scripts that can be solved
by anyone at any moment. It is easy to verify that a pruned
maximal unknown TX T-DAG is still a T-DAG whose leaves
fulfill the termination condition. The pruning process involves

7

removing the trivial output and linking the funded outputs
with the spending ones. Figure 2 illustrates the compression
process 6.

Fig. 2: Illustration of a compression process.

From now on, when we refer to an Unknown TX DAG we
will actually be referring to its compressed version.

C. Chain Abstractions and Post-Processing

After compressing an Unknown TX DAG, we need to store
it. To do so, we will use a canonical representation of our
graph. A canonical labeling is a string derived from a graph
such that two different graphs are isomorphic if and only if
they yield the same string. A canonical representation (i.e. the
canonical labeling associated to a set of isomorphic graphs) is
then the representative of a graph isomorphism class. In this
section we present a total ordering for T-DAG isomorphism
classes and a canonical labeling for T-DAGs.

A total ordering for T-DAG isomorphism classes: Let us
first introduce the notation that we will use in this section.
Let T be a T-DAG (see Definition 9) with its root denoted
by t. Given a T-DAG T = (V,E), we say that |T | := |V |.
Given a vertex v ∈ V , Γ+(v) is its outdegree. Lastly, given a
T-DAG T the children of the root t are t1, . . . , tΓ+(t). The set
(T1, . . . , TΓ+(t)) denotes the maximal collection of sub DAGs
induced on T having t1, . . . , tΓ+(t) as roots.

Definition 11 (≺ - relation)
Given two T-DAGs, S rooted at s and T rooted at t, we say
S ≺ T if
(i) |S| < |T |, or

(ii) |S| = |T | ∧ Γ+(s) < Γ+(t), or
(iii) |S| = |T | ∧ Γ+(s) = Γ+(t) = k∧ for the first index

i ≤ k for the ordered sets (S1, . . . , Sk) and (T1, . . . , Tk)
(where S1 � · · · � Sk and T1 � · · · � Tk) where Si

differs from Ti, it holds Si ≺ Ti.

Definition 12 (≡ - equality)
Given two T-DAGs T and S, we say T ≡ S if neither T ≺ S
nor T � S hold.

Let ∼= be the isomorphism operator. We derive the following
lemma:

6Note that, since inputs are initially removed from the compressed graph,
we actually link funded outputs with the spending outputs associated to the
removed inputs. Nonetheless, in Figure 2, we have included the input for
better comprehension.

Lemma 2. Given two T-DAGs T and S with |T | = |S| = n,
then T ≡ S ⇔ T ∼= S.

Proof. We prove each implication separately,
[⇒] Let Sn be the symmetric group acting on the vertices

of T , V (T). Given σ ∈ Sn, we denote the action of σ on
v ∈ V (T) by σ(v). We can naturally extend the definition to
sets of vertices, S ⊆ V, σ(S) = {σ(v) : v ∈ S}, and to the T-
DAG itself σ(T) := (σ(V), E′), where E′ = {(σ(u), σ(v)) :
(u, v) ∈ E(T)}.

Remark 5. Let S and T be two T-DAGs, |T | = |S| = n.
Then,

S ∼= T ⇔ ∃σ ∈ Sn such that σ(S) = T

We now prove this direction of the lemma by induction on
the size of the T-DAG, |T |.

If |T | = 1: then both S and T are T-DAGs formed by a
single vertex, hence they are the same graph and therefore
isomorphic taking the identity permutation.

If |T | = n: to prove the inductive step we assume that
for any pair of T-DAGs with size < n, then T ≡ S ⇒
T ∼= S. If now |T | = n, T ≡ S ⇒ |T | = |S| = n,
Γ+(t) = Γ+(s) = k, and (T1, . . . , Tk) ≡ (S1, . . . , Sk)
pairwise, where S1 � · · · � Sk and T1 � · · · � Tk. That

is, ∀i ∈ 1, . . . k

{
Ti ≡ Si

|Ti| = |Si| < n
Ind.H
=⇒ Ti ∼= Si

R. 5
=⇒ ∃σi ∈

S|Ti| such that σi(Ti) = Si. We now consider the following
permutation: σ = σ1◦· · ·◦σk ◦(t→ s), the composition of all
the permutations that match each subtree and the map from a
root to the other. σ fulfils that σ(T) = S

R. 5
=⇒ T ∼= S

[⇐] We argue again by induction on the size of the T-DAG.
The base case is the same as before so we do not repeat it.
For the induction step, we have:

If |T | = n: T ∼= S ⇒ |T | = |S| = n∧Γ+(t) = Γ+(s) = k.
Additionally, ordering the subtrees (T1, . . . , Tk), (S1, . . . , Sk)
such that T1 � · · · � Tk and S1 � · · · � Sk necessarily
Ti ∼= Si∀i ∈ {1, . . . , n} with |Ti| = |Si| < n

Ind.H
=⇒ Ti ≡

Si ⇒ (T1, . . . , Tk) ≡ (S1, . . . , Sk)⇒ T ≡ S.

Remark 6. The operators (≺,�,≡) induce a total ordering
on T-DAGs isomorphism classes.

Proof. Given T and S two T-DAGs,
(i) Antisymmetry: S � T ∧ S � T ⇔ ¬(S � T) ∧ ¬(S ≺

T)⇔ S ≡ T ⇔ S ∼= T
(ii) Transitivity: clearly holds by definition.

(iii) Connex Property: S � T ∨ S � T ⇔ ¬(A � B) ∨
¬(A ≺ B)⇔ ¬(A � B ∧A ≺ B)⇔ ¬0 = 1

Canonical labeling for T-DAGs: We now introduce a canon-
ical labeling for T-DAGs. We provide unique representatives
for T-DAG isomorphism classes and their string representation.

Definition 13 (∆-operator)
The indegree operator (∆) is a total ordering on equivalence
classes of the ≡-relation. Let T be a T-DAG such that T1 �

8

· · · � TΓ+(t). That is, it takes a set of representatives of the
≡-relation and orders it. Formally,

∆ :{T1, . . . , TΓ+(t)}/ ≡−→ {T1, . . . , TΓ+(t)}/ ≡
{Ti, . . . , Ti+k} 7−→ ∆({T̄i, . . . , Ti+k}) := ({Ti, . . . , Ti+k},≤∗)

where k ∈ N and ({Ti, . . . , Ti+k},≤∗) is the totally ordered
set according to the following relation:

Ti ≤∗ Tj ⇔
(
{|Γ−(ti1)|, . . . , |Γ−(tiΓ+(ti)

)|},≤
)
≤(

{|Γ−(tj1)|, . . . , |Γ−(tjΓ+(tj)
)|},≤

)
That is, Ti ≤∗ Tj iff the non-decreasing indegree sequence of
ti’s children is pairwise smaller than that of tj .

Naturally, applying the operator to the whole set (i.e. ∆(T))
means applying it element-wise in the quotient set, reordering
only elements that were considered ≡-equal.

Definition 14 (T-DAG isomorphism classes representative)
Given a T-DAG, T , we reorder it so that T1 � · · · � TΓ+(t).
We denote the reordered T-DAG with T ∗. The representative
of T ’s isomorphism class T̄ is defined as T̄ := ∆(T ∗).

Lemma 3. Given T and S T-DAGs, T ∼= S ⇒ T̄ = S̄. Thus
T̄ is well defined.

Proof. Given a vertex v ∈ V (T), the height of v is the number
of edges of the longest path between v and one of its leafs.
Let V (T)h ⊂ V (T), be the set of vertices with height equal
to h. We prove that, given an h, the set of maximal induced
T-DAGs rooted at V (T)h and V (S)h, reordered with � and
then with ∆, are the same. In particular, when h equals the
height of the T-DAG (i.e. the height of its root), this yields
T̄ = S̄. We proceed by induction on the height h.

If the height is 0: T ∼= S ⇒ |{v ∈ V (T) : Γ+(v) =
0}| = |{v ∈ V (S) : Γ+(v) = 0}| = k. In fact both T-DAGs
have the same number of leafs and therefore {t1, . . . , tk} =
{s1, . . . , sk}.

If the height is h: we assume that, for heights ≤ h, the set
of T-DAGs reordered with � and then with the ∆ operator are
the same. T ∼= S ⇒ |V (T)h+1| = |{v ∈ V (T) : height(v) =
h+1}| = |{v ∈ V (S) : height(v) = h+1}| = |V (S)h+1| = k.
We now order V (T)h+1 and V (S)h+1 in non-decreasing
outdegree order and we apply the ∆ operator to {T1, . . . , Tk}
and {S1, . . . , Sk}, the T-DAGs with roots in V (T)h+1 and
V (S)h+1. We will refer to the before-mentioned roots as
{t1, . . . , tk} and {s1, . . . , sk}, and to the j−th sibling of
the i−th root as tji , where j ∈ {1, . . . ,Γ+(ti)} (with T j

i

being the T-DAGs rooted at this nodes). {T1, . . . , Tk} and
{S1, . . . , Sk} ordered in this manner satisfy T1 � · · · � Tk
and S1 � · · · � Sk. Furthermore, for each T-DAG Ti,
i ∈ {1, . . . , k}, with root ti at layer with height h, we have
that

Γ+(ti) = Γ+(si)

∀j ∈ {1, . . . ,Γ+(ti)}
{

Γ−(tji) = Γ−(sji)

Ind. H⇒ T j
i = Sj

i

⇒ Ti = Si

All vertices with height h + 1 have as children the roots of
T-DAGs with heights ≤ h.

If now we make h + 1 equal T and S’s height, we have
V (T)h+1 = t and V (S)h+1 = s. Therefore, the set of
maximal induced T-DAGS are {T} and {S} respectively. We
have proven that, reordering with � and ∆, both sets are equal.
Hence, T̄ = S̄.

Remark 7. It holds T ∼= T̄ .

Proof. From Definition 14 we observe that, in order to obtain
T̄ from T , we reorder the subtrees non-decreasingly and we
apply the ∆ operator. Let then σ be a permutation such that
σ(T) generates T1 � · · · � TΓ+(t). We then consider µ as the
permutation resulting of doing σ and ∆ one after the other in
this order. From Remark 5 it follows that µ(T) = T̄

R. 5
=⇒ T ∼=

T̄ .

Definition 15 (T-DAG labeling)
Given a T-DAG T we identify its vertices traversing T breadth-
first with a FIFO queue and, starting from the root, for each
new vertex (not identified that we dequeue) we assign it the
current vertex count value, increment the count by one and
queue its set of children. The labeling lbl(T), associated to T ,
is the string result from traversing the identified T breadth-first
with a FIFO queue and, starting from the root, for each vertex
(not processed that we dequeue) we append each of its children
identifier to the labeling and queue each of its children. We
separate children of the same parent with a comma ’,’, sets of
siblings with a colon ’:’, and we denote the end of the label
with a semi-colon ’;’ 7. We will refer to the identifier (the
label) of a vertex v obtained through this procedure as id(v).

Definition 16 (T-DAG canonical labeling)
Given a T-DAG T , the canonical labeling of T , c(T) is the
labeling of its isomorphism class representative, T̄ . That is,
c(T) := lbl(T̄).

In a nutshell, the canonical labeling is obtained with a
total ordering for T-DAGs, an indegree-based operator and an
additional labeling Sufficiency is proven in Lemma 7.

Before proving the sufficiency of the three operations, we
introduce additional concepts regarding labelings.

Definition 17 (Labeling clause)
Given a labeling lbl(T) of a T-DAG T , a clause in the labeling
is a set of identifiers contained within either two colons, a
colon and a semi-colon, or the beginning of the labeling and
a colon.

Note that, given a labeling lbl(T), we can index the clauses
by order of appearance starting from 0. Thus, we can think of
lbl(T) as an ordered array of clauses: lbl(T) = [c0, . . . , cn],
where n = |V (T)|. Thus, an upper-bound to get the length
of each clause, by preprocessing the label, is O(m), where
m = |E(T)|.

7We are aware that these separators depend heavily on the labeling
implementation.

9

Given a T-DAG labeling lbl(T), we can obtain an array
out_deg that in the i-th position contains the outdegree
of v ∈ V (T) such that id(v) = i. Algorithm 2 presents a
pseudo-code to do so. The proofs of correctness (Lemma 4)
and complexity (Lemma 5) are omitted for space reasons.

Algorithm 2 Outdegree sequence from a label.

1: procedure OUTDEGREE PARSING(lbl(T))
2: m← max(lbl(T))
3: out deg ← zeros-array(m+ 1)
4: processed← zeros-array(m+ 1)
5: Q← FIFO Queue()
6: n id← 0
7: for i : 1 to # clauses in lbl(T) do
8: while ! Q.empty() do
9: n id← Q.dequeue()

10: if ! processed[n id] then
11: break
12: if ! processed[n id] then
13: processed[n id]← True
14: out deg[n id]← len(ci)
15: for all id in ci do
16: Q.queue(id)
17: return out deg

Lemma 4. Algorithm 2 is correct.

Lemma 5. The Algorithm described in Algorithm 2 is linear
in the number of edges of the labeled T-DAG T . Thus, if m =
|E(T)|, the complexity is O(m).

Lemma 6. Let S and T be T-DAGs with |S| = |T | and
Γ+(s) = Γ+(t) = k. Let S̄ and T̄ be their isomorphism class
representatives.

S̄ � T̄ ⇒ ∃u ∈ V (S̄), v ∈ V (T̄) s.t.

id(u) = id(v) but Γ+(u) 6= Γ+(v)

where id is the identifier assigned to each vertex when labeled.

Proof. W.l.o.g. we assume S̄ ≺ T̄ . This implies that either
(i), (ii), or (iii) from Definition 11 must hold. Let us define
the following set of indices, D := {i ∈ {1, . . . , k} : S̄i � T̄i}.
From the hypothesis we can ensure that D 6= ∅. For each index
i ∈ D, we take ui the first vertex traversing S̄i

breadth-first with a FIFO queue such that condition (ii)
fails. Note that, from Definition 12 and Lemma 2, S̄i � T̄i
implies that at some point of the recursion (i) or (ii) will fail.
And if (i) fails, necessarily does (ii). Let U be, U := {ui :
i ∈ D}, and u∗,

u∗ := argmin
u∈U

{id(u)}

Let v∗ be the corresponding vertex in V (T̄) that made con-
dition (ii) fail for u∗. For all vertices with a smaller id, the
outdegree is the same. Additionally, since S̄ and T̄ are both
ordered non-decreasingly, when traversed breadth-first with a

FIFO queue, we can affirm that u∗ and v∗ will be given the
same identifier but they have different outdegrees.

Lemma 7. Given two T-DAGs T and S, it holds T ∼=
S ⇔ c(T) = c(S). Thus, the canonical labeling presented
in Definition 16 is well defined.

Proof. We prove each implication separately,
[⇒] This implication is an immediate consequence of

Lemma 3. T ∼= S ⇒ T̄ = S̄ ⇒ c(T) = c(S), since the
process described in Definition 16 is deterministic.

[⇐] We will prove this implication by contrapositive. We
will see that T � S ⇒ c(T) 6= c(S). Consider two T-DAGs,
T and S, such that T � S.

Since T � S then it must be T̄ � S̄ what implies T̄ 6≡ S̄.
Therefore, either T̄ ≺ S̄ or S̄ ≺ T̄ must hold. Without loss of
generality we assume S̄ ≺ T̄ . Lemma 4 proofs that, given a
T-DAG labeling, lbl(T), we can obtain |T | and T ’s outdegree
sequence. As a consequence, lbl(S̄) = lbl(T̄) ⇒ |S̄| = |T̄ |,
and two vertices with the same id have the same outdegree.
Furthermore, from Definition 11 we recall:

S̄ ≺ T̄ ⇒


(i)|S̄| < |T̄ | , or
(ii)|S̄| = |T̄ | ∧ Γ+(s̄) < Γ+(t̄) , or
(iii)|S̄| = |T̄ | ∧ Γ+(s̄) = Γ+(t̄) = k∧(

S̄1, . . . , S̄k

)
≺
(
T̄1, . . . , T̄k

)
(i)⇒ |S̄| 6= |T̄ | L. 4

=⇒ lbl(S̄) 6= lbl(T̄)⇒ c(S) 6= c(T)
(ii) ⇒ Γ+(s̄) 6= Γ+(t̄) ⇒ clause #1 in each label will

have a different size ⇒ c(S) 6= c(T)
If condition (i) or (ii) happen, we are done with the proof.

Otherwise we can assume |S̄| = |T̄ | and Γ+(s̄) = Γ+(t̄) = k.
From Lemma 4 we state the following:

lbl(S̄) = lbl(T̄)⇒ ∀v ∈ V (S̄), u ∈ V (T̄);

id(v) = id(u)⇒ Γ+(v) = Γ+(u)

That is, if two vertices have the same identifier (and the T-
DAGs they belong to have the same label), they must have the
same outdegree.

Equivalently, if this does not hold, then two T-DAGs cannot
have the same labeling. Formally,

∃v ∈ V (S̄),∃u ∈ V (T̄) s.t. id(v) = id(u) but

Γ+(v) 6= Γ+(u)⇒ lbl(S̄) 6= lbl(T̄)

Then, if we assume (iii) holds,
(iii) ⇒ |S̄| = |T̄ | ∧ Γ+(s̄) = Γ+(t̄) = k we also have

S̄ � T̄
L. 6,L. 4

=⇒ lbl(T̄) 6= lbl(S̄)⇔ c(S) 6= c(T)
And we have proven that T � S ⇒ c(T) 6= c(S). Thus,

c(T) = c(S)⇒ T ∼= S.

To obtain the canonical labeling from any given T-DAG,
we first obtain its isomorphism class representative and then
the labeling induced from it. Figure 3 presents a bottom up
strategy to obtain the class representative and the associated
canonical labeling (it should be read from left to right, top

10

Fig. 3: From left to right, obtaining the isomorphism class representative and the canonical labeling.

to bottom). In the first four graphs, we perform a bottom up
approach to reorder the T-DAG. Bold vertices are those already
sorted and the dashed boxes mark which sets of siblings are
to be sorted next. Finally, given the class representative (T̄),
we provide the canonical labeling.

Using the constructions and the efficient labeling derived in
this section, we can state our main theoretical result.

Theorem 1
The set of unknown inputs/outputs induces a family of sub-
graphs (patterns), within the Bitcoin User Network, which can
be efficiently labeled and tested for isomorphism.

To the best of our knowledge, this is the first result that
systematically addresses unknown transactions, which are of-
ten neglected in the current technical literature. In the next
section, we will use our isomorphism algorithm to cluster
TX T-DAGs that interact with the same patterns. Note that,
while presented only for unknown transactions, our approach
immediately extends to any transaction system where patterns
can be modeled by T-DAGs.

V. EXPERIMENTAL RESULTS

In this section, we describe the methodology adopted to
implement and test our model on the Bitcoin ledger and
discuss the achieved results. Our approach consists of multiple
steps. First, we parsed the Bitcoin blockchain according to the
framework introduced in Section IV-A. Blocks and transac-
tions information were retrieved by querying directly a Bitcoin
full-node, importing data into a MySQL database. We then
retrieved all the unknown transactions with a valid locking
script from our database, and we applied our methodology
to build TX T-DAGs and study their patterns. Finally, we
clustered all the TX T-DAGs found in the previous step
according to their isomorphism classes to group all similar
patters that could have been created by the same entity. The
above steps are described in more details in the following
subsections.

A. Database

Complete and reliable Bitcoin blockchain data are essential
to correctly build the TX T-DAGs. The official software release
used by the Bitcoin protocol, i.e. Bitcoincore, is not suitable
for this purpose as it is not designed for the analysis of the

Number of
isomorphic
TX T-DAG

Height Cardinality Number
of edges

Number
of roots

29218 2 3 2 1
607 2 11 14 2
51 2 6 7 1
36 2 6 5 1
32 2 5 4 1
25 2 7 6 1
20 2 7 6 1
14 2 6 6 1
12 2 4 3 1
9 2 6 5 1
9 2 40002 40000 20000
...
1 2260 6878 7176 10
1 514 2073 4144 7
1 383 1568 3096 13
1 381 1059 1058 5
1 2 5 4 1

Table III: 10 most common isomorphism classes and some
other more complex patterns.

data contained in the blockchain. To the best of our knowledge,
all freely available blockchain explorer tools suffer from the
problems described in Section IV-A. That is, they do not
properly handle custom transactions. For this reason, we have
designed a MySQL database to store transaction data retrieved
by parsing the Bitcoin ledger using our model discussed in
Section IV-A. We imported all the Bitcoin blockchain data
starting from the genesis block 0 (mined on 2009-01-03), up to
block 591,872 (mined on 2019-08-26). Our database consists
of more than 448 million Bitcoin transactions, over 1.1 billion
transaction inputs, over 1.2 billion transaction outputs and
around 550 million Bitcoin addresses. We hosted our MySQL
database on a Dell Poweredge R740 Server, equipped with 2
CPU Intel® Xeon® Gold 6144 3.5G, RAM 512GB, running
Ubuntu Server 18.04.4 LTS. To parse the Bitcoin ledger, we
used Bitcoin Core Daemon v.0.18.0.0, running on a Dell
XPS laptop equipped with an Intel® Xeon® CPU E3-1505M
2.80GHz, RAM 32GB - OS: Ubuntu 18.04.4 LTS.

B. Unknown TX T-DAG Construction

After the parsing phase, our database contains all the
transactions included in the Bitcoin ledger, both unknown and
standard. At this point, we started analyzing the unknown

11

Fig. 4: 10 most common isomorphism classes.

ones, identifying around 22 million α-nodes that can generate
an Unknown TX T-DAG (DAGs where the inner nodes are
only unknown transaction outputs). We then built a forest by
iterating Algorithm 1 for each α-node. Each weakly connected
component of this forest represents an Unknown TX T-DAG
originating from one or more alpha nodes. We used the library
networkx 2.3 (together with the Python 3.5 interpreter) to
create and manage the forest containing all the Unknown TX
T-DAGs.

C. Pruning Phase

By construction, Unknown TX T-DAGs represent
transaction patterns in the blockchain network generated
by unknown transactions. The root denotes the set of
(standard) inputs that generated the pattern. Each inner node
represents an unknown transaction output, i.e. an output with
a Null value, that has been spent. Finally, each leaf represents
either a known transaction output (with a valid Bitcoin address
attached to it) or an unspent transaction output (either with a
valid or a null address). Therefore, an unknown TX T-DAG
of height 1 is trivial: in fact, such graph represents a single
transaction with an unknown output that has not been spent.
An output of this type could be an invalid/unspendable output
or simply a custom but valid output that has not been spent
in the considered blockchain portion. In the first case, since
its locking script is malformed, this output is impossible to
redeem. Therefore, the corresponding Unknown TX T-DAG
can never grow further. In the second case, however, if the
unknown output is spent in the future, our methodology
will capture this event during the update of our database,
and the associated Unknown TX T-DAG structure will be
updated and considered for further analysis. Following this
observation, we pruned the forest by dropping the weakly
connected components of height 1 as they do not represent a
relevant pattern for either T or U .
Finally, we obtained a forest with 803,782 nodes and 797,432
edges, having 30,333 weakly connected components left,
i.e., our Unknown TX T-DAGs. These T-DAGs can be
easily integrated into the transaction network T and the user
network U . In this way, bot the blockchain analysis tools and
the proposals in the literature which use these data structures

will rely on complete information, never considered before.

D. Isomorphism Detection

In the last step of our methodology, we clustered the
30,333 Unknown TX T-DAGs, obtained in the previous phase,
according to their isomorphism classes. For each T-DAG, we
built its isomorphism class representative (definition 14) by
using the total ordering introduced in Section IV-C Before
performing the clustering procedure, we augmented every TX
T-DAGs with more than one root, such as the one depicted
in Figure 4.2. In particular, for each graph of the cited type,
we created a new root connected to each of the old ones.
Consequently, each graph g with multiple roots is converted
into a new graph g∗ having a single root and the same nodes
of g plus one (the new root). Once all the Unknown TX T-
DAGs were standardized to have a single root, we clustered
them according to their isomorphism class representative. We
identified 273 different isomorphism classes. Figure 4 shows
the 10 most common classes, while Table III reports the height,
cardinality, number of edges, and number of roots for the same
classes and some other ones characterized by a more complex
pattern.

E. Discussion

Our approach is, to the best of our knowledge, the only
one capable of identifying transaction inputs and outputs
without relying on Bitcoin addresses, providing a framework
to correctly handle unknown transactions. This feature allowed
us to detect unknown transaction patterns not captured by
state of the art blockchain analysis techniques. The 30,000+
Unknown TX T-DAGs discovered, can be easily integrated
into the Bitcoin User Network, finally providing a complete
transaction history, taking into account also unknown trans-
actions. It is worth highlighting that even the simplest of the
identified structures, such as the one in Figure 4.1, that appears
more than 29,000 times in the Bitcoin ledger, is sufficient
to make current parsers not to consider potentially relevant
data. Indeed, although the transaction contains the root (the
payer address) and the leaf (the recipient address), the User
Network built without considering unknown transactions will
not contain the middle node (unknown output), hence breaking

12

the connection between the two users. Instead, integrating the
User Network with our T-DAGs, automatically increases the
accuracy of any Bitcoin clustering heuristic used so far, as
well as any deanonymization technique, by simply considering
never-used before data. In addition, our isomorphism classes
could lead to new clustering techniques: non-trivial patterns,
i.e. transaction schemes not originated from a normal user
behavior, can be used to cluster services/entities that exhibit
the same patterns. Other than the 10 most common isomor-
phism classes shown in Figure 4, we found several other
patterns that deserve particular attention from a semantic point
of view. As an example, we discovered an Unknown TX T-
DAG of height 2260, having 6878 nodes, and 7176 edges. This
complex pattern has 10 roots, i.e., is generated by 10 different
standard transactions and therefore potentially by up to 10
different entities. Started on 2014-02-19, and concluded on
2014-12-08, such a pattern moved a total of 247.36 Bitcoins
that, according to the historical Bitcoin prices, were worth
about 92,500 US Dollars at the time of the last transaction
(December 2014)—a complete analysis of the just introduced
graph, and other interesting ones, will be provided in future
work.
As a further step to refine our results, we have removed T-
DAGs generated by trivial transactions, e.g., transactions re-
deemable by anyone, and T-DAGs generated by non-standard
transactions with a known semantic, e.g., transactions gener-
ated by software bugs, network tests, and crypto challenges,
just to name a few. The goal is to focus only on interesting T-
DAGs, i.e., those that may have been created to hide malicious
behavior, discarding those generated by known and legitimate
activities. In order to perform this filtering, we checked the
locking script at the root of each T-DAGs. In particular, we
have created regular expressions for each non-standard locking
script with trivial semantics observed in the literature. Then,
we used these regular expressions to filter our T-DAGs.
After this step, we discarded the graphs listed below as
generated by non-standard locking scripts observed in [8]:
• 2 T-DAGs generated by P2PKH NOP transactions, that

have been probably used to test the OP NOP operator;
• 2 T-DAGs generated by OP MIN OP EQUAL transac-

tions, that anyone can easily unlock without any private
key;

• 5 T-DAGs generated by Pay to Hash transactions, consid-
ered as “contest” in the network to find the correct value
of the hash in the transactions;

• 1 T-DAGs generated by OP IF transactions, that could be
used to make a P2SH that can be unlocked by revealing
only the redeem script;

Moreover, we discarded also the following graphs generated
by trivial locking scripts never observed before:
• 2 T-DAGs generated with the OP CHECKMULTISIG

operator, that anyone can easily unlock without any
private key;

The remaining 30,221 T-DAGs could be generated either by
an unknown transaction never observed before or by a non-

standard transaction known in the literature but with non-trivial
semantics. Such graphs could be linked to malicious behavior
and deserve a careful investigation in future work.

VI. CONCLUSION AND FUTURE WORK

We have shown that the current assumption that each
transaction output has an address attached to it, is false. We
have identified transactions that violate the cited assumption,
labelling them unknown transactions. These unknown transac-
tions imply, among other, that current clustering techniques are
incomplete. Starting from the above observation, we proposed
a theoretical model rooted on sound graph theory to detect,
study, and classify patterns of unknown transactions. Exploring
the Bitcoin network via our new tool we unveiled non-trivial
classes of transaction patterns never considered before. We
were able to identify over 30,000 unknown TX T-DAGs. Each
of them represents a money flow that is invisible to standard
parsing techniques. Some of these patterns show a high level of
sophistication, with a complex topology potentially associated
with automated payment services. Our novel approach to the
Bitcoin graph opens up a brand new vein of research. For
instance, the semantic associated to the discovered patterns is
still to be explored. Furthermore, by extending the theoretical
model to every transaction (using for example flow theory to
remove cycles in the user network or, in general, focusing on
transaction patterns that are represented by T-DAGs), it could
be possible to study and cluster other types of non-standard
behaviors within the Bitcoin environment. Moreover, our
solution could be adapted to detect anomalous behaviour
in the flourishing field of blockchain-based applications. In
conclusion, we believe that the contribution provided in this
work, from both a theoretical and practical point of view, other
than being interesting on their own—providing for the first
time a complete view of the bitcoin blockchain—, also pave
the way for further research and applications in the Bitcoin
domain and its spin-off technologies.

ACKNOWLEDGMENT

This publication was partially supported by the award NPRP
11S-0109-180242 from the Qatar National Research Fund
(QNRF), a member of The Qatar Foundation. The information
and views set out in this publication are those of the authors
and do not necessarily reflect the official opinion of the QNRF.

REFERENCES

[1] E. Androulaki, G. O. Karame, M. Roeschlin, T. Scherer, and S. Capkun,
“Evaluating user privacy in bitcoin,” in Financial Cryptography and
Data Security. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 34–51.

[2] A. Antonopoulos, Mastering Bitcoin, 2nd ed. 5 St George’s Yard
Farnham, Surrey: O’Reily, 2017.

[3] L. Babai, “Graph isomorphism in quasipolynomial time [extended
abstract],” in Proceedings of the Forty-eighth Annual ACM Symposium
on Theory of Computing, ser. STOC ’16. New York, NY, USA: ACM,
2016, pp. 684–697. [Online]. Available: http://doi.acm.org.recursos.
biblioteca.upc.edu/10.1145/2897518.2897542

[4] L. Babai, D. Y. Grigoryev, and D. M. Mount, “Isomorphism of graphs
with bounded eigenvalue multiplicity,” in Proceedings of the Fourteenth
Annual ACM Symposium on Theory of Computing, ser. STOC ’82.
New York, NY, USA: ACM, 1982, pp. 310–324. [Online]. Available:
http://doi.acm.org/10.1145/800070.802206

13

http://doi.acm.org.recursos.biblioteca.upc.edu/10.1145/2897518.2897542
http://doi.acm.org.recursos.biblioteca.upc.edu/10.1145/2897518.2897542
http://doi.acm.org/10.1145/800070.802206

[5] L. Babai, W. Kantor, and E. Luks, “Computational complexity and the
classification of finite simple groups,” in 24th Annual Symposium on
Foundations of Computer Science (sfcs 1983). Tucson, AZ: IEEE,
1983, pp. 162–171.

[6] L. Babai and E. M. Luks, “Canonical labeling of graphs,” in
Proceedings of the Fifteenth Annual ACM Symposium on Theory of
Computing, ser. STOC ’83. New York, NY, USA: ACM, 1983, pp.
171–183. [Online]. Available: http://doi.acm.org.recursos.biblioteca.upc.
edu/10.1145/800061.808746

[7] M. Bartoletti and L. Pompianu, “An analysis of bitcoin op return
metadata,” in International Conference on Financial Cryptography and
Data Security, Springer. Cham: Springer International Publishing, 2017,
pp. 218–230.

[8] S. Bistarelli, I. Mercanti, and F. Santini, “An analysis of non-standard
transactions,” Frontiers in Blockchain, vol. 2, p. 7, 2019. [Online].
Available: https://www.frontiersin.org/article/10.3389/fbloc.2019.00007

[9] Bitcoin Project 2009-2020, “Bitcoin development,” https://bitcoin.org/
en/development, accessed: March 2021.

[10] ——, “What is a full node?” https://bitcoin.org/en/full-node, accessed:
March 2021.

[11] S. R. Buss, “Alogtime algorithms for tree isomorphism, comparison,
and canonization,” in Computational Logic and Proof Theory. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1997, pp. 18–33.

[12] G. G. Dagher, B. Bünz, J. Bonneau, J. Clark, and D. Boneh, “Provisions:
Privacy-preserving proofs of solvency for bitcoin exchanges,” in
Proceedings of the 22Nd ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’15. New York, NY, USA:
ACM, 2015, pp. 720–731. [Online]. Available: http://doi.acm.org/10.
1145/2810103.2813674

[13] P. T. Darga, M. Liffiton, K. Sakallah, and I. Markov, “Exploiting
structure in symmetry detection for cnf,” in Proceedings of the
41st Annual Design Automation Conference, ser. DAC ’04. New
York, NY, USA: ACM, 2004, pp. 530–534. [Online]. Available:
http://doi.acm.org.recursos.biblioteca.upc.edu/10.1145/996566.996712

[14] D. Ermilov, M. Panov, and Y. Yanovich, “Automatic bitcoin address
clustering,” in 2017 16th IEEE International Conference on Machine
Learning and Applications (ICMLA). Cancun, ROO ,77500, Mexico:
IEEE, Dec 2017, pp. 461–466.

[15] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf,
and S. Capkun, “On the security and performance of proof of
work blockchains,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’16.
New York, NY, USA: ACM, 2016, pp. 3–16. [Online]. Available:
http://doi.acm.org/10.1145/2976749.2978341

[16] A. Gervais, H. Ritzdorf, G. O. Karame, and S. Capkun, “Tampering with
the delivery of blocks and transactions in bitcoin,” in Proceedings of
the 22Nd ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’15. New York, NY, USA: ACM, 2015, pp. 692–705.
[Online]. Available: http://doi.acm.org/10.1145/2810103.2813655

[17] M. Harrigan and C. Fretter, “The unreasonable effectiveness of address
clustering,” in 2016 Intl IEEE Conferences on Ubiquitous Intelligence
Computing, Advanced and Trusted Computing, Scalable Computing and
Communications, Cloud and Big Data Computing, Internet of People,
and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/Smart-
World). Toulouse, France: IEEE, July 2016, pp. 368–373.

[18] J. Hopcroft, A. Aho, and J. Ullman, The Design and Analysis of
Computer Algorithms. Reading, Massachusetts: Addison-Wesley, 1974.

[19] H. A. Jawaheri, M. A. Sabah, Y. Boshmaf, and A. Erbad, “Deanonymiz-
ing tor hidden service users through bitcoin transactions analysis,”
Computers & Security, vol. 89, p. 101684, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404818309908

[20] T. Junttila and P. Kaski, “Engineering an efficient canonical labeling tool
for large and sparse graphs,” in 2007 Proceedings of the Ninth Workshop
on Algorithm Engineering and Experiments (ALENEX). Astor Crowne
Plaza, New Orleans, Louisiana: SIAM, 2007, pp. 135–149.

[21] H. Kalodner, S. Goldfeder, A. Chator, M. Möser, and A. Narayanan,
“BlockSci: Design and applications of a blockchain analysis platform,”
ArXiv e-prints, vol. abs/1709.02489, Sep. 2017.

[22] L. Kiffer, R. Rajaraman, and a. shelat, “A better method to analyze
blockchain consistency,” in Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security, ser. CCS ’18.
New York, NY, USA: ACM, 2018, pp. 729–744. [Online]. Available:
http://doi.acm.org/10.1145/3243734.3243814

[23] D. Kondor, M. Pósfai, I. Csabai, and G. Vattay, “Do the rich get richer?
an empirical analysis of the bitcoin transaction network,” PloS one,
vol. 9, no. 2, p. e86197, 2014.

[24] Y. Kwon, D. Kim, Y. Son, E. Vasserman, and Y. Kim, “Be
selfish and avoid dilemmas: Fork after withholding (faw) attacks
on bitcoin,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’17. New
York, NY, USA: ACM, 2017, pp. 195–209. [Online]. Available:
http://doi.acm.org/10.1145/3133956.3134019

[25] M. Lischke and B. Fabian, “Analyzing the bitcoin network: The first
four years,” Future Internet, vol. 8, no. 1, 2016. [Online]. Available:
http://www.mdpi.com/1999-5903/8/1/7

[26] E. Luks, “Isomorphism of graphs of bounded valence can be tested
in polynomial time,” in 21st Annual Symposium on Foundations of
Computer Science (sfcs 1980). Syracuse, NY: IEEE, Oct 1980, pp.
42–49.

[27] D. Maesa, A. Marino, and L. Ricci, “Uncovering the bitcoin blockchain:
An analysis of the full users graph,” in 2016 IEEE International
Conference on Data Science and Advanced Analytics (DSAA). Alberta,
Canada: IEEE, Oct 2016, pp. 537–546.

[28] D. D. F. Maesa, A. Marino, and L. Ricci, “An analysis of the bitcoin
users graph: inferring unusual behaviours,” in Studies in Computational
Intelligence. Springer International Publishing, Nov. 2016, pp. 749–760.
[Online]. Available: https://doi.org/10.1007/978-3-319-50901-3 59

[29] B. McKay and A. Piperno, “Practical graph isomorphism, II,” CoRR, vol.
abs/1301.1493, 2013. [Online]. Available: http://arxiv.org/abs/1301.1493

[30] B. D. McKay, “Computing automorphisms and canonical labellings of
graphs,” in Combinatorial Mathematics, D. A. Holton and J. Seberry,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1978, pp. 223–
232.

[31] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy,
G. Voelker, and S. Savage, “A fistful of bitcoins: Characterizing
payments among men with no names,” in Proceedings of the 2013
Conference on Internet Measurement Conference, ser. IMC ’13. New
York, NY, USA: ACM, 2013, pp. 127–140. [Online]. Available:
http://doi.acm.org/10.1145/2504730.2504747

[32] A. P. Motamed and B. Bahrak, “Quantitative analysis of cryptocurrencies
transaction graph,” Applied Network Science, vol. 4, no. 1, Dec. 2019.
[Online]. Available: https://doi.org/10.1007/s41109-019-0249-6

[33] M. Muzychuk, “A solution of the isomorphism problem for circulant
graphs,” Proceedings of the London Mathematical Society, vol. 88, no. 1,
pp. 1–41, 2004.

[34] J. D. Nick, “Data-Driven De-Anonymization in Bitcoin,” Master’s thesis,
ETH Zurich, 2015.

[35] M. Ober, S. Katzenbeisser, and K. Hamacher, “Structure and anonymity
of the bitcoin transaction graph,” Future Internet, vol. 5, no. 2, pp.
237–250, 2013. [Online]. Available: http://www.mdpi.com/1999-5903/
5/2/237

[36] S. Pemmaraju and S. Skiena, Computational Discrete Mathematics:
Combinatorics and Graph Theory with Mathematica. Cambridge:
Cambridge University Press, 2003.

[37] F. Reid and M. Harrigan, An Analysis of Anonymity in the Bitcoin
System. New York, NY: Springer New York, 2013, pp. 197–223.
[Online]. Available: https://doi.org/10.1007/978-1-4614-4139-7 10

[38] C. SecTech, “Notpetya attack,” https://cyber-sectech.fandom.com/wiki/
NotPetya Attack, 2017, accessed: March 2021.

[39] M. Spagnuolo, F. Maggi, and S. Zanero, “Bitiodine: Extracting in-
telligence from the bitcoin network,” in International Conference on
Financial Cryptography and Data Security. Springer, 2014, pp. 457–
468.

[40] Wikipedia, “Wannacry ransomware attack,” https://en.wikipedia.org/
wiki/WannaCry ransomware attack, 2019, accessed: March 2021.

[41] C. Yun, Y. Yirong, and M. Richard, “Canonical forms for labelled
trees and their applications in frequent subtree mining,” Knowledge and
Information Systems, vol. 8, no. 2, pp. 203–234, Aug 2005. [Online].
Available: https://doi.org/10.1007/s10115-004-0180-7

14

http://doi.acm.org.recursos.biblioteca.upc.edu/10.1145/800061.808746
http://doi.acm.org.recursos.biblioteca.upc.edu/10.1145/800061.808746
https://www.frontiersin.org/article/10.3389/fbloc.2019.00007
https://bitcoin.org/en/development
https://bitcoin.org/en/development
https://bitcoin.org/en/full-node
http://doi.acm.org/10.1145/2810103.2813674
http://doi.acm.org/10.1145/2810103.2813674
http://doi.acm.org.recursos.biblioteca.upc.edu/10.1145/996566.996712
http://doi.acm.org/10.1145/2976749.2978341
http://doi.acm.org/10.1145/2810103.2813655
https://www.sciencedirect.com/science/article/pii/S0167404818309908
http://doi.acm.org/10.1145/3243734.3243814
http://doi.acm.org/10.1145/3133956.3134019
http://www.mdpi.com/1999-5903/8/1/7
https://doi.org/10.1007/978-3-319-50901-3_59
http://arxiv.org/abs/1301.1493
http://doi.acm.org/10.1145/2504730.2504747
https://doi.org/10.1007/s41109-019-0249-6
http://www.mdpi.com/1999-5903/5/2/237
http://www.mdpi.com/1999-5903/5/2/237
https://doi.org/10.1007/978-1-4614-4139-7_10
https://cyber-sectech.fandom.com/wiki/NotPetya_Attack
https://cyber-sectech.fandom.com/wiki/NotPetya_Attack
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://doi.org/10.1007/s10115-004-0180-7

	I Introduction
	I-A Contribution

	II Background
	II-A Preliminaries
	II-B Bitcoin Transaction Network and User Network

	III Related Work
	III-A Bitcoin Addresses Clustering
	III-B Graph Isomorphism

	IV Unknown Transactions Recognition
	IV-A Unknown Transactions and Working Framework
	IV-B Unknown TX T-DAG Construction
	IV-C Chain Abstractions and Post-Processing

	V Experimental Results
	V-A Database
	V-B Unknown TX T-DAG Construction
	V-C Pruning Phase
	V-D Isomorphism Detection
	V-E Discussion

	VI Conclusion and Future Work
	References

