
FAABRIC: Fine-Grained Distribution of Scientific Workloads in the Cloud

Simon Shillaker
Imperial College London

Carlos Segarra
Imperial College London

Eleftheria Mappoura
Imperial College London

Mayeul Fournial
Imperial College London

Lluís Vilanova
Imperial College London

Peter Pietzuch
Imperial College London

Abstract
With their high parallelism and resource needs, many sci-

entific applications benefit from cloud deployments. Today,
scientific applications are executed on dedicated pools of
VMs, resulting in resource fragmentation: users pay for un-
derutilised resources, and providers cannot reallocate unused
resources between applications. While serverless cloud com-
puting could address these issues, its programming model is
incompatible with the use of shared memory and message
passing in scientific applications: serverless functions do not
share memory directly on the same VM or support message
passing semantics when scheduling functions dynamically.

We describe FAABRIC, a new serverless cloud runtime that
transparently distributes applications with shared memory
and message passing across VMs. FAABRIC achieves this
by scheduling computation in a fine-grained (thread/process)
fashion through a new execution abstraction called Granules.
To support shared memory, Granules are isolated using Web-
Assembly but share memory directly; to support message pass-
ing, Granules offer asynchronous point-to-point communica-
tion. FAABRIC schedules Granules to meet an application’s
parallelism needs. It also synchronises changes to Granule’s
shared memory, and migrates Granules to improve locality.

1 Introduction
Cloud computing offers on-demand access to plentiful re-
sources, making it an attractive choice for highly-parallel
scientific applications in hydrodynamics [44], genomics [7],
and epidemiology [28]. Such applications often employ paral-
lel programming models that use multi-threading with shared
memory (e.g. OpenMP [45]) and distributed processing with
message passing (e.g. MPI [40]).

Cloud providers have introduced platforms, e.g. AWS
Batch [3] and Azure Batch [30], that support such work-
loads. These platforms typically dedicate a pool of virtual
machines (VMs) to execute a queue of jobs [3, 30]. This al-
lows such platforms to support shared memory and message
passing applications: the provider schedules jobs on one or
more VMs according to the requested parallelism (e.g. MPI’s

world size or OpenMP’s OMP_NUM_THREADS). Shared memory
applications are normally executed on a single VM with many
CPU cores and large memory sizes.

Deploying scientific applications on a fixed set of VMs,
however, leads to resource fragmentation: if a job does not use
all available resources or cannot be bin-packed onto available
VMs, users pay for idle or under-utilised VMs; providers
also cannot exploit a user’s idle resources, diminishing the
efficiency of their infrastructure [3, 30].

To achieve higher utilisation, serverless computing [4, 13,
32] distributes workloads as fine-grained functions, which
execute on large VM clusters, isolated through lightweight
mechanisms (e.g. containers [43], micro-VMs [1, 4], or Web-
Assembly [15,60]). Serverless computing thus reduces under-
utilisation by distributing workloads at a fine granularity
across machines [4, 13, 32]. By making more fine-grained de-
cisions about how to allocate each VM’s resources, a provider
achieves higher utilisation and thus lower per-tenant costs.

The programming models used in scientific applications,
namely shared memory and message passing [23], make it
challenging to support such applications in serverless envi-
ronments: (1) shared memory applications rely on threads for
parallelism, requiring state to be shared: threads must access
the same address space, which is not possible among server-
less functions running in different containers, potentially on
different VMs. In addition, when deployed in a serverless
setting, multi-threaded code is restricted to the parallelism
available within a function’s isolation boundary, e.g. a sin-
gle container; and (2) message passing applications need a
fixed-size pool of stateful processes to support consistent syn-
chronous communication – this is unavailable in a serverless
setting, in which functions tend to be short-lived, stateless
and only communicate through storage [17].

We describe FAABRIC, a new serverless cloud runtime that
executes scientific applications with shared memory and mes-
sage passing. For this, FAABRIC exploits the new abstraction
of Granules, which allow for thread- and process-granular
scheduling. FAABRIC does not require changes to existing
parallel programming models: it transparently executes ap-

1

ar
X

iv
:s

ub
m

it/
47

51
18

8
 [

cs
.O

S]
 2

2
Fe

b
20

23

plications that use OpenMP API [45] for shared memory or
MPI API [40] for message passing. It achieves this through
the following contributions:

(1) Supporting multi-threading/processing via Granules.
FAABRIC executes applications as batches of distributed
Granules (§3.1) running on shared VMs. A Granule can share
memory with other Granules to offer thread semantics, or
have private memory for process semantics. Granules can
be spawned (or migrated) based on a snapshot taken from
a parent Granule. FAABRIC uses WebAssembly [16] to iso-
late Granules and take snapshots of a Granule’s state: its
shared/private memory, message queues, address information
and execution state, e.g. stack pointers and function tables.

(2) Transparent distribution of Granules. FAABRIC allows
the provider to distribute computation using Granules. A
scheduler in FAABRIC can choose to spawn or migrate Gran-
ules across VM. It makes scheduling decisions when Granules
reach control points, which are triggered by system calls and
calls to parallel APIs. At each control point, FAABRIC may
spawn new Granules to add a logical thread or process to
the application, increasing parallelism; or migrate existing
Granules, e.g. to increase locality of execution.

(3) Distributed synchronisation of address spaces. To sup-
port shared memory programming, FAABRIC must offer se-
quential consistency within each Granule, provide distributed
synchronisation primitives, e.g. mutexes and barriers, and
synchronise distributed writes to shared address spaces (§4).
Granules synchronise writes to the address space by building
lists of byte-wise diffs. Each Granule maintains a record of
writes to shared memory pages, performs byte-wise compar-
isons against its parent snapshot and propagates changes back
to a main Granule via byte-wise diffs. To support updates
to shared variables across Granules, byte-wise diff specify a
merge operation, e.g. summation over shared variables.

(4) Asynchronous messaging through Granule groups. To
support message passing between Granules, FAABRIC organ-
ises them into Granule groups. Each Granule is assigned an
index within the group and can send/receive messages to/from
Granules in the group. FAABRIC maintains a set of queues
for each Granule to buffer incoming messages, thus send-
ing/receiving messages asynchronously without the need for
Granules to have been scheduled. This prevents message loss
during Granule migration. FAABRIC implements common
collective communication operations, such as all-reduce [41].
Its implementation uses fast in-memory message exchange
between co-located Granules on the same VM.

In our evaluation, we use FAABRIC to execute scien-
tific applications implemented using OpenMP and MPI
(LAMMPS [55], and the ParRes kernels [48]) and compare
them to native OpenMP and OpenMPI. When executing a
queue of 100 applications on a 32 VM cluster, FAABRIC
can reduce makespan by up to 23% thanks to its granular
scheduling of threads and processes.

Domain Name Language SM MP

Molecular dynamics
LAMMPS [54] C++ 7 3
MDAnalysis [29] Python 3 7

Bio-informatics
BioPython [9] Python 3 7
gatk [10] Java 3 7

Fluid dynamics
OpenFOAM [44] C++ 7 3
SU2 [62] C++ 3 7

Deep learning
OpenCV [42] C++ 7 3
Tensorflow [63] Python 3 7

Table 1: Github’s most-starred projects in scientific domains
use shared memory (SM) or message passing (MP)

2 Scientific Applications in Cloud
Next, we outline the benefits and challenges associated with
using cloud models for scientific applications (§2.1). We then
analyse what support representative APIs for shared memory
and message passing require from their execution environ-
ment (§2.2). Based on this, we develop a list of features nec-
essary to deploy such applications in serverless cloud (§2.3).

2.1 Cloud models for scientific applications

Cloud platforms for scientific applications such as AWS
Batch [3] and Azure Batch [30] allocate a dedicated pool
of VMs to execute jobs. Each VM has the same size, as de-
termined by the number of vCPUs and memory in GB. For
general purpose VMs, memory increases linearly with vC-
PUs and price per hour [33]. Jobs in a queue are assigned
VMs [38] based on their requested parallelism. For example,
MPI jobs specify the number of processes through the com-
mand line: mpirun -np <num_processes> and are assigned
enough VMs such that the sum of vCPUs is greater or equal
to the requested processes.

This introduces efficiency challenges due to fragmentation:
if a job does not use all of its assigned resources, these re-
sources are wasted. For example, the number of MPI process
requested may not be a multiple of the number of vCPUs per
VM. In addition, different jobs cannot execute concurrently
on the same VM [34]. In all of these cases, users pay for
under-utilised or idle resources, and providers cannot allocate
these resources to other jobs in the queue.

Reducing the VM size reduces fragmentation but impacts
performance: message passing jobs become less co-located,
and shared memory jobs have less available memory. Allo-
cating a mix of different VM sizes in the pool only partially
alleviates these problems, because the resource requirements
of jobs are unknown ahead of time, making it challenging for
providers to provide the right distribution of VM sizes.

In response, cloud platforms have increasingly adopted fine-
grained distribution to reduce costs for users, and increase
infrastructure utilisation [6, 19]. This has culminated in to-
day’s serverless cloud offerings, such as AWS Lambda [4]
and Azure Functions [32], in which providers take full con-
trol of the parallelism and distribution of applications, billing
users to a millisecond granularity [17].

Serverless applications are divided into thousands of

2

1 int[] weights = initWeights ();
2

3 for (int i = 0; i < numSteps; i++) {
4 #pragma omp parallel shared(weights) {
5 int threadNum = omp_get_thread_num ();
6 int nThreads = omp_get_num_threads ();
7 updateWeights(weights , threadNum , nThreads);
8 #pragma omp single
9 applyWeights(weights);

10 }

Listing 1: Pseudocode for machine learning training using
OpenMP’s parallel abstraction (Within the parallel block, the
OpenMP runtime controls the degree of parallelism, and ensures
access to and synchronisation of the shared variable weights.)

small stateless tasks, which can be parallelised and dis-
tributed [4, 13, 32]. This gives providers the flexibility to
allocate resources, and execute functions on those resources,
according to bespoke policies. The finer-grained the server-
less functions become, the higher the packing density that the
provider can achieve and the more control a provider has over
the resource allocation to each application.

2.2 Shared memory and message passing APIs

Although scientific applications cover diverse domains, many
employ the same two programming models: shared mem-
ory and message passing. Shared memory is used for paral-
lelism within a single machine, e.g. using multi-threading li-
braries such as OpenMP [45]; and message passing is used for
parallelism across machines, e.g. using MPI [40] and multi-
processing. Tab. 1 shows the most starred open-source repos-
itories in several scientific application domains on Github,
which all use either or both of these programming models.

OpenMP and MPI, along with other parallel programming
models, offer high-level declarative APIs that impose certain
features on the underlying execution environment. If we want
to deploy such applications with fine-grained distribution in a
serverless cloud environment, the cloud platform must offer
support to parallelise the computation, and partition, distribute
and synchronise private and shared data.

Listing 1 shows a sample OpenMP implementation of
stochastic gradient descent (SGD) [53], a core algorithm in
machine learning training. The omp parallel construct re-
quests that a for loop be executed in parallel with access to
a single shared variable, the weights vector. The OpenMP
runtime has control over the underlying threads and data par-
titioning between them. It must ensure read-only access to the
shared address space, except for the weights vector, which
receives synchronised writes from multiple threads.

The environment used to execute this code must spawn and
execute parallel threads, each with access to a shared address
space, and provide synchronisation primitives for accessing
shared variables. This is trivial on a single host but becomes
difficult if we distribute the computation. In a distributed
environment, the shared address space must be made available
and synchronised across VMs. Any coordination primitives,
such as locks, must also operate in a distributed manner.

1 int worldSize , rank;
2 MPI_Comm_size(MPI_COMM_WORLD , &worldSize);
3 MPI_Comm_rank(MPI_COMM_WORLD , &rank);
4 int[] weights = initWeights ();
5

6 for (int i = 0; i < numSteps; i++) {
7 updateWeights(weights , rank , worldSize);
8 MPI_Allreduce(MPI_IN_PLACE , weights , nWeights ,
9 MPI_INT , MPI_SUM , 0, MPI_COMM_WORLD);

10 if(rank == 0) applyWeights(weights);
11 }

Listing 2: Pseudocode for machine learning traning using
MPI’s MPI_Allreduce function (The MPI runtime controls the de-
gree of parallelism, data partitioning and messaging topology.)

Platform Threads/
processes

Fixed
parallelism

Shared
addr. space

Direct
comms.

AWS Batch [3] 3 3 7 3
Azure Batch [30] 3 3 7 3

Azure Dur. Funcs. [35] 7 3 7 7
AWS Step Functions [5] 7 3 7 7
AWS Lambda [4] 7 7 7 7
Azure Functions [32] 7 7 7 7

Crucial [8] 3 7 7 7
Faasm [60] 7 7 3 7
Faastlane [20] 7 7 3 7
Kappa [65] 3 7 7 3
SAND [2] 7 7 7 3

FAABRIC 3 3 3 3

Table 2: Cloud support for scientific workloads (We differentiate
between batch-compute, serverless-compute and academic.)

As another example, Listing 2 shows an SGD implementa-
tion based on MPI’s MPI_Allreduce() operation: concurrent
processes execute the same function to transform and aggre-
gate results on multiple VMs. The MPI runtime manages the
processes, data transfers and messaging topology: it sums the
weights and broadcasts the result to all processes.

The execution environment for this code must provide
a fixed-size pool of processes, each of which maintains in-
memory state, and can send/receive messages to/from the
others in the group. The processes count cannot be changed
throughout the application’s lifetime due to the complexity
of maintaining consistent in-memory process state, and pre-
serving the rank-based addressing scheme between processes.
This makes it challenging to vary the assigned resources.

2.3 Requirements

To perform fine-grained distribution of the code in Listing 1
and 2, a cloud platform must support the following features:
thread/process semantics, fixed parallelism, shared address
space and direct communication. Tab. 2 summarises the sup-
port for these features in today’s scientific cloud platforms,
and contrasts them with serverless platforms.

Thread/process semantics. When an application uses
threads or processes for parallel computation, the execution
environment must (i) fork and join child processes, which
duplicate the parent’s process state; and (ii) spawn and join
threads, which share the parent’s address space.

3

Granule
Snapshot

Granule group
Message queue

Restored

from Execution state

Code

(WebAssembly)

Execution state
Address table

Member

of

Figure 1: Key abstractions in FAABRIC (Granules are restored from
snapshots, and each Granule is a member of a Granule group).

Existing scientific and serverless cloud platforms sup-
port thread/process semantics, but only within a given VM
or serverless function. Although each VM/function can
fork a process/thread, the degree of parallelism is limited
by the resources allocated to the host. For example, on
AWS Lambda [4], it is possible to spawn new threads but
they run inside the same function, competing for the same
resources. This limits the flexibility afforded to the provider,
preventing them from arbitrarily distributing each thread and
process on any VM, e.g. to achieve optimal bin-packing of
multiple tenants.

Control of parallelism. Typically, parallel applications use
a known number of threads/processes and employ synchroni-
sation primitives (e.g. barriers, mutexes and locks) to ensure
correct execution. A known parallelism degree allows appli-
cations to partition data and computation appropriately.

Existing scientific cloud platforms [3, 30] provide a fixed
level of parallelism to each job. They only allocate each VM
to one job, resulting in unused resources if the job does not
exploit a VM’s full parallelism. Serverless platforms, on the
other hand, do not guarantee a fixed level of parallelism, in-
stead allocating available resources from the shared infras-
tructure. While this means that serverless platforms cannot
execute scientific workloads, they can perform fine-grained
distribution according to their own scheduling policies. In an
ideal scientific computing environment, the platform would
both guarantee a fixed level of parallelism, while retaining
control over its own fine-grained scheduling decisions.

Shared address space. As shown in Listing 1, multi-threaded
applications assume that threads share the same virtual ad-
dress space. To avoid concurrency issues, access to the address
space must be coordinated. Standard libraries [26, 52] and
OSs provide implementations of synchronisation primitives
such as mutexes, semaphores and barriers.

As with thread/process semantics, today’s cloud-based sci-
entific and serverless platforms both support shared memory
within a single VM/function. This means that shared memory
parallelism is limited to the scale of a single VM/function,
preventing the provider from arbitrarily distributing threads.
The ideal scientific computing environment would be able
to distribute threads, while maintaining a distributed shared
address space across them, as well as providing distributed
coordination primitives.

Direct communication. Each process in a message-passing
application must be able to transfer data to other pro-
cesses (see Listing 2). In MPI, this is done based on an address
represented as an integer (rank).

Existing scientific cloud computing platforms support low-

Thread

Main Granule, G1 created from S0

Snapshot S1 taken of G1

G2,3,4 created from S1

G1,2 and G3,4 share memory

F1

F2

Main VM Worker VM

F3 F4

S1

Process

Main Granule, G1 created from S0

Snapshot S1 taken of G1

G2,3,4 created from S1

No Granules share memory

F1

F2 F3 F4

S1 S1

S1

S0

S0

Figure 2: Thread/process semantics with Granules

latency point-to-point communication for applications, as
long as the available parallelism is sufficient to execute a
fixed-size pool of threads. These platforms, however, cannot
redistribute resources within a running application, as they
cannot migrate processes between VMs. Serverless platforms
isolate functions even if they belong to the same application,
preventing them from obtaining stable identities for commu-
nication. An ideal scientific cloud environment would enable
long-lived stateful processes with direct communication, yet
allow the resources allocated for these processes to be mi-
grated and shared between applications.

3 Executing Threads and Processes
FAABRIC is a serverless cloud runtime that supports multi-
threading and multi-processing, yet offers fine-grained distri-
bution. It introduces a new parallel computing primitive, the
Granule, with thread and process semantics (§3.1). Granules
allow FAABRIC to control an application’s parallelism and
distribution via control points (§3.2). At control points, the
FAABRIC runtime interrupts the application to add, remove or
migrate Granules (§3.3). FAABRIC thus efficiently executes
parallel applications and gives the cloud provider control over
scheduling (§3.4).

3.1 Granule abstraction

To support multi-threading and multi-processing, FAABRIC
uses Granules. Granules can be snapshotted and restored
across VMs to support the parent/child semantics of threads
and processes. They also share a single distributed address
space for shared memory programming (§4). Finally, they sup-
port the direct exchange of messages within Granule groups
for message passing (§5).

Fig. 1 gives an overview of the key abstractions. Each Gran-
ule executes application code compiled to WebAssembly [16],
a binary platform-independent execution format. The use of
WebAssembly enforces lightweight memory safety: its isola-
tion mechanism allows Granules to execute side-by-side in
a single instance of the FAABRIC runtime. It also allows for
an efficient snapshotting mechanism because the complete
execution state of a Granule is captured in the single linear
memory array of a WebAssembly module.

FAABRIC creates a Granule by restoring it from a snapshot,

4

Application code
Granule host interface

Control points

Implementation (syscalls, APIs)In
te

rfa
ce

 c
al

l
Application

Granny

runtimeRe

tu
rn

 v
al

ue

Figure 3: Control points (Control points are triggered when applica-
tion code calls functions from supported APIs, before the FAABRIC

implementation of the given function is executed.)

which has a copy of a Granule’s execution state: its linear
memory, mutable global variables, a function table and stack
pointers. To restore a Granule, FAABRIC copies the stack
pointer, function table and globals from the snapshot into the
Granule, and creates a copy-on-write mapping of the Granule
memory onto the snapshot’s linear memory.

Fig. 2 shows how FAABRIC uses Granules and snapshots
to replicate process and thread semantics across VMs. Each
application has a base snapshot, whose linear memory con-
tains the static data of the application. Granules restored from
point-in-time snapshots of their parent Granules; Granules
with thread semantics share a single linear memory mapping
with other Granules on that VM.

3.2 Intercepting execution with control points

To execute and distribute scientific applications in a cloud
environment, FAABRIC must interrupt the application execu-
tion periodically: it must (i) provision new Granules when
the degree of parallelism used by the application changes;
(ii) migrate Granules as dictated by the scheduler to improve
locality and utilisation; (iii) synchronise shared memory be-
tween VMs; and (iv) deliver messages between Granules.

As shown in Fig. 3, FAABRIC triggers control points when
an application invokes certain system calls and parallel pro-
gramming APIs. Granules execute application code com-
piled to WebAssembly, and WebAssembly can pass con-
trol to the execution runtime for arbitrary listed functions.
FAABRIC uses this approach to transfer control to the run-
time on system calls related to thread and process operations,
e.g. pthread_create() and fork(), as well as functions from
OpenMP and MPI APIs, e.g. MPI_Allreduce().

When making such function calls, control passes to the
FAABRIC runtime at a control point. Before the runtime ex-
ecutes an API or system call implementation, it may per-
form one or more of the following actions: (a) spawn Gran-
ules to execute new logical threads/processes, e.g. on fork();
(b) await the completion of Granules to replicate joining
a thread or awaiting process completion, e.g. on a call to
pthread_join(); (c) merge changes to a shared address space
using byte-wise diffs (§4), e.g. when completing OpenMP
parallel sections; (d) send/receive messages between the
Granules (§5.1), e.g. due to MPI_Send(); and (e) migrate a
Granule (§3.3) to another host, e.g. on a call to MPI_Barrier().

3.3 Migrating Granules across VMs

Cloud providers must retain control over the scheduling of
Granules on VMs, e.g. to increase host utilisation or to co-

Main VM Worker A Worker B
G1 G2 G3 G4 G5 G6

1. Enter barrier CP
2. Migration possible
3. Reserve space
4. Granules migrate

6. Continue

G5
G6

G1 G2 G5 G3 G4 G6

5. Exit barrier CP

Figure 4: Granule migration at barrier control points

locate Granules belonging to the same tenant. FAABRIC
achieves this control despite the long-lived execution of Gran-
ules because Granules can be migrated between VMs. Migra-
tion decisions are determined by a scheduling policy, e.g. bin-
packing to the fewest VMs, load-balancing across VMs, or
exploiting locality for Granules of a single application.

To simplify the migration process, Granule migration may
only be carried out at barrier control points. These are con-
trol points that block all Granules of an application, e.g. as
triggered by calls to OpenMP’s barrier directive, MPI’s
MPI_Barrier() or MPI_Allreduce() functions.

Fig. 4 illustrates Granule migration. When Granules reach
a barrier control point, they wait for a notification from the
application’s main VM. When the main Granule reaches the
barrier control point on the main VM, it queries the scheduler
for migration decisions. The scheduler, periodically and in
the background, applies its scheduling policy and decides on
function migrations if the current function execution deviates
from the desired allocation. It then sends messages to all
FAABRIC runtimes on the VMs involved in the migrations.

To migrate a Granule, the involved FAABRIC runtimes
reserve the necessary resources for the Granules. If the re-
sources have become unavailable, the migration is aborted.
After that, the Granules to be migrated perform the migration
and notify the main VM. Once the main VM has received no-
tifications from all migrated Granules, it allows the Granules
to exit the barrier control point.

The actual migration of a Granule is performed via the
same mechanism that FAABRIC uses to create child processes
and threads. The migrating Granule takes a snapshot, and
sends the snapshot as part of a migration request to the target
VM. The target VM creates a new Granule with the required
semantics, i.e. with a new private mapping of the snapshot’s
linear memory for a process, or sharing a linear memory map-
ping with existing Granules for a thread.

3.4 FAABRIC architecture

Fig. 5 shows FAABRIC’s architecture. A FAABRIC runtime
executes on each VM, controlling a variable-sized pool of
Granules, snapshots and message queues. Each Granule runs
a single thread/process from an application.

FAABRIC uses a distributed shared state scheduler: the
FAABRIC runtime on each VM has a local scheduler, which
communicates with the other schedulers in the cluster. The
local scheduler allocates up to one Granule per CPU core. If
the thread or process executing in a given Granule requests

5

VM A

S

G1 G2

VM B

S

G3

S

G1 G2

S

G3 G4

Diffs

Diffs

Messages

Messages

Main, worker Worker, main Snapshot
replica
Granule

Message
queues

Main

snapshot

Figure 5: FAABRIC architecture (FAABRIC runtime instances act as
either the main VM or worker VM for each application. They add,
remove and migrate Granules, synchronise replicas of snapshots
via byte-wise diffs, and asynchronously pass messages between
Granules.)

more parallelism, the local scheduler creates new Granules on
that VM. If that VM has exhausted its CPU cores, the local
scheduler chooses another VM, preferably one that already
executes Granules for that application, as it then holds the
application code and Granule snapshots in memory. If no such
VM is available, the scheduler selects the VM with the most
available resources. It then transfers the required snapshot to
the new VM, and requests that it create and execute the new
Granule.

Similar to most MPI implementations, FAABRIC currently
does not offer fault-tolerance features—when one or more
Granules fail, the whole application fails. Fault tolerance
could be added to FAABRIC by exploiting Granule snapshots
as checkpoints. If a Granule fails, the most recent snapshot can
be restored, either on the same or on a different VM. Incoming
messages to a Granule can be persisted by the local FAABRIC
runtime until the next snapshot is reached, and replayed after
Granule failure.

4 Shared Memory Programming
To execute multi-threaded applications correctly with shared
memory, FAABRIC must provide consistency guarantees
across Granules and VMs, alongside suitable synchronisa-
tion primitives. FAABRIC makes shared memory consistent
by sending byte-wise diffs between Granules and VMs that
communicate updates to the shared address space (§4.1).

Programming models such as OpenMP use reductions to
aggregate parallel updates to shared variables without the
coordination overhead of mutexes. FAABRIC supports re-
ductions using merge operations, which allow it to combine
multiple byte-wise diffs to the same memory region using
arithmetic operations (§4.2). Finally, FAABRIC provides cus-
tom implementations of coordination primitives including
mutexes, barriers and latches (§4.3).

4.1 Synchronising changes to shared memory

By default, multi-threaded applications assume only weak
consistency guarantees on the memory shared between
threads; stronger consistency is requested explicitly through
synchronisation primitives. Assuming code is free from data

int* w = init();
#pragma omp parallel

{

 updateWeights(i, w);

 #pragma omp barrier

 applyWeights(i, w);

}

finaliseWeights(w);

G1

S G3G2 Push snapshot S to Sc
Restore G2,3 from Sc
Execute G1,2,3

At barrier, update S/Sc
Remap G1,2,3

G1 at parallel section

Execute G1,2,3
G2,3 finish, update S
Remap G1
Execute G1

Main Worker

Sc

1

2

3
4

5

Figure 6: Synchronisation of a shared address space (Dis-
tributed Granules execute an OpenMP parallel section with a
barrier.)

races, FAABRIC must correctly execute multi-threaded appli-
cations: it must ensures that writes to shared memory from a
child thread are visible to the parent thread when it joins that
child. Changes must be visible to all threads when entering a
critical section, or exiting an explicit or implicit barrier [45].

When FAABRIC needs to execute a child thread, it creates
a new Granule from a snapshot of the main Granule. This
snapshot is maintained until all child threads have finished ex-
ecution, and acts as the main snapshot for the shared address
space. FAABRIC synchronises all subsequent changes across
Granules via this main snapshot: it receives updates to it from
other Granules and VMs, and uses it to calculate updates to
send to remote VMs.

A Granule maps its linear memory from the main snapshot
if executing on the main VM, or a replica of the main snapshot
if executing on a worker VM. The Granule then tracks the
changes made to the shared address space by application code.
FAABRIC write-protects all memory pages of the Granule’s
linear memory using mprotect() [25] and handles the page
faults caused by application code by marking the page dirty
and resetting its read/write permissions.

To send these changes back to the main VM when the
Granule completes or reaches a barrier, the Granule performs
a byte-wise comparison of the modified pages with its local
copy of the main snapshot. This results in a list of byte-wise
diffs that specify the offset at which the changes occurred and
the modified bytes. The main VM receives these byte-wise
diffs from worker VMs and uses them to update the main
snapshot.

The FAABRIC runtime must update the main snapshot repli-
cas on remote VMs, e.g. when exiting a barrier. It transmits
only the byte-wise diffs required to update the remote repli-
cas, and not the whole snapshot. To enable this, the FAABRIC
runtime on the main VM keeps track of which bytes have
been updated by incoming byte-wise diffs, then sends a new
set of byte-wise diffs with these changes to the worker VMs.

Fig. 6 gives an example of shared memory synchronisation,
which shows how FAABRIC executes an implementation of
the SGD example (Listing 1) using 3 Granules across 2 VMs.
1 When the main Granule enters an OpenMP parallel sec-

6

int n = get_max_num_threads()

int[] w = initWeights(n);

#pragma omp parallel {
 int t = omp_get_thread_num();

 w[t] = updateWeight(w, t, n);

}

applyWeights(w);
int x = 0;

#pragma omp for reduction(+:x) {
for(int i=0; i<n; i++) {
 x += w[i] > threshold ? 1 : 0;
}

G1
Main Worker

G2 G3 G4S

G7G6G5

S

Figure 7: Reductions in OpenMP (Granules on 2 VMs make non-
conflicting updates in a parallel section, and perform a reduction.)

tion, it triggers a control point at which FAABRIC creates the
main snapshot of the shared address space from the main
Granule. 2 FAABRIC then creates 2 more Granules from a
replica of this main snapshot on the worker VM, and each
Granule executes the body of the parallel section. 3 When
all Granules have reached the barrier, each creates a list of
byte-wise diffs that the FAABRIC runtime on the main VM
uses to update the main snapshot. 4 On exiting the barrier, the
main VM’s FAABRIC runtime sends another list of byte-wise
diffs to update the snapshot replica on the worker VM. All
Granules then remap their own linear memory to the local
copy of the snapshot and continue execution. 5 At the end
of the parallel section, the parent Granule joins the child
Granules, and again FAABRIC uses the byte-wise diffs from
each Granule to update the main snapshot. Finally, the main
Granule remaps its memory from the snapshot.

4.2 Supporting reductions on shared variables

Declarative multi-threading frameworks such as OpenMP al-
low multiple threads to aggregate changes to shared variables
using reductions [46]. A reduction spawns multiple threads
that update one or more shared variables in parallel, then
aggregates those updates once all threads have completed
execution, e.g. via a summation. By deferring the aggregation
of concurrent updates to shared variables until threads have
completed, we can avoid the overhead that would otherwise
be incurred from synchronising those updates using a mu-
tex. FAABRIC distributes multi-threaded applications, hence
reducing synchronisation between threads via reductions re-
duces cross-VM coordination overheads.

To distribute reductions in FAABRIC, the runtime on each
VM performs the reduction operation locally for the Granules
executing on that VM, then transmits its updates back to the
main VM as a byte-wise diff. For each byte-wise diff sent
back to the main VM, FAABRIC specifies a merge operation,
with the arithmetic operation that should be used to apply that
byte-wise diff to the main copy of the shared variable.

Fig. 7 shows OpenMP code for a parallel section that
performs disjoint updates to a shared vector and a reduction

section to update a shared variable via a summation. FAABRIC
spawns 3 child Granules when the main Granule reaches the

Merge operation Formula Data types

sum A1 = A0 +(B1−B0) All numeric
subtract A1 = A0− (B0−B1) All numeric
multiply A1 = A0 ∗ (B1 /B0) All numeric
divide A1 = A0 /(B0 /B1) All numeric
overwrite A1 = B1 Arbitrary bytes

Table 3: Merge operations supported by FAABRIC. (FAABRIC

overwrites the original value A0 in the main snapshot with value A1.
B0 is the value seen in the snapshot on the remote VM before the
Granule executed, and B1 is the value after execution.)

parallel section, creating the main snapshot on the main VM
and a replica on the worker VM. Each Granule maps its linear
memory from its local copy of the snapshot.

In the first parallel section, each Granule updates its value
in the w vector. The resulting byte-wise diffs can be written
directly to the main snapshot without a merge operation. In
the reduction section, each thread updates their local copy
of the variable x, generating a byte-wise diff on the same
memory region. Since the reduction specifies a summation
over x, FAABRIC combines these byte-wise diffs in the main
snapshot using a sum.

Tab. 3 lists the merge operations supported by FAABRIC.
They include simple arithmetic operations of summation, sub-
traction, multiplication and division, as commonly found in
parallel reductions. The operations involve four values: A0,
the starting value in the main snapshot; B0, the value held in
the copy of the snapshot on the remote VM; B1, the updated
value after the thread has executed on the remote VM; and
A1, the value written to the main snapshot by the operation.

4.3 Synchronisation primitives

In addition to providing shared memory and reduction op-
erations, FAABRIC must support the synchronisation primi-
tives in multi-threaded code that control concurrent access to
shared data. FAABRIC offers the following primitives:

Mutexes. A mutex guarantees that only one Granule can ac-
cess data at a given time. In FAABRIC, application code that
acquires a mutex triggers a control point, and the associated
Granule requests a lock on the mutex from the FAABRIC run-
time. When locking the mutex, the FAABRIC runtime returns
the byte-wise diffs to update that Granule’s local copy of the
shared memory snapshot. This way, the Granule holding the
mutex is guaranteed to observe the updates of other Granules
that have also held it; when releasing the mutex, the Granule
returns its own set of byte-wise diffs to the FAABRIC runtime.

Atomic operations. Atomic arithmetic operations do not
guarantee consistency, only atomicity. To perform such op-
erations, each Granule acquires a VM-local mutex to avoid
data races on the local copy of the shared memory. FAABRIC
then uses a merge operation corresponding to the arithmetic
operation to merge the resulting byte-wise diffs.

Barriers. A barrier is either implicit or explicit: an implicit
barrier is introduced by a parallel section; an explicit barrier
is added manually. Barriers require that all Granules block

7

until they have completed the barrier. Afterwards, all Granules
must observe a consistent view of the shared memory. On
entering a barrier, Granules send their byte-wise diffs to the
main VM and block. After all threads have completed, the
main VM sends the aggregated byte-wise diffs to all Granules,
which unblock.

Latches. A latch allows Granules to decrement a counter
and/or wait for it to reach zero. Latches are used implicitly
in nowait OpenMP operations: the main Granule blocks until
all child Granules have reached the latch. Granules can make
non-blocking requests to the main VM to decrement a latch,
or blocking requests to wait for the latch to reach zero.

5 Message Passing
To support multi-process applications with message passing,
FAABRIC must associate Granules with long-lived identities
for communication. FAABRIC organises Granules into Gran-
ule groups, in which each Granule is assigned an index. It can
then asynchronously send and receive messages to and from
other Granules in the group by referring to that index (§5.1).

When migrating Granules between VMs, each FAABRIC
runtime instance updates its local Granule group metadata
to ensure consistent message delivery independent of each
Granule’s placement (§5.2). For efficient collective communi-
cation, FAABRIC provides Granule group-aware implemen-
tations of operations such as all-reduce and broadcast, max-
imising fast intra-VM messaging via in-memory data struc-
tures (§5.3).

5.1 Communication in Granule groups

Each Granule that executes a process in a multi-process appli-
cation may need to send messages directly to another Granule,
e.g. to fulfil API calls in a message-passing framework such
as MPI. To enable such message passing efficiently, FAABRIC
allows asynchronous messaging between Granules within
a Granule group. The asynchronous nature of FAABRIC’s
message passing avoids blocking a sender Granule while the
receiver Granule is being migrated or initialised.

By default, all Granules that execute an application are
in the same Granule group. FAABRIC may create new
Granule groups on control points, e.g. as triggered by
MPI_Comm_create(), which allows the application to control
communication groups. A Granule group assigns each Gran-
ule an index, which FAABRIC uses as an address for that
Granule in its implementation of message passing APIs. Each
FAABRIC runtime that executes a Granule holds a replica of
the Granule group metadata with an address table that maps
the indexes of Granules in the Granule group to the VM on
which they have been scheduled. For each Granule of the
group executed on a VM, the FAABRIC runtime has a set of
queues to buffer messages sent to that index.

When a Granule triggers a control point that requires send-
ing a message, e.g. MPI_Send(), the FAABRIC runtime on the
VM of the sending Granule looks up the recipient index in

Main (12.3.44.5) Worker (12.3.44.6)
G1 G2 G3

Idx VM
1 local

2 12.3.4.6

3 12.3.4.6

Inboxes

Idx VM
1 12.3.4.5

2 local
3 local

Inboxes

Main (12.3.44.5) Worker (12.3.44.6)
G1 G2 G3

Idx VM 	
1 local

2 local
3 12.3.4.6

Inboxes

Idx VM
1 12.3.4.5

2 12.3.4.5

3 local

Inboxes

2:1
3:1

1:2
3:2

1:3
2:3

2:1
3:1

1:2
3:2

1:3
2:3

GX

Figure 8: Preserving a Granule group while migrating (One
Granule from the Granule group is migrated from a worker VM
to the main VM, and FAABRIC updates the metadata and queues.)

MPI_Init();
int[] w= initWeights();
for(int i=0; i<steps; i++) {
 updateWeights(w, r, n);
 MPI_Allreduce(w, n);

 if(rank == 0)
 applyWeights(w);
}

G1

Main Worker
G2 G3 G4 Granule group created

AllReduce transmit

AllReduce share

All Granules continue

G5 G6 1

2

3

4

Figure 9: MPI collective communication (A VM-leader on each
VM sends/receives intra-VM messages (blue) and sends/receives
cross-VM message (red) to/from other VM-leaders.)

the address table for that group. If the recipient is on the same
VM, FAABRIC directly enqueues the message on the rele-
vant in-memory queue. This results in low-latency intra-VM
messaging compared to using the local loopback network in-
terface or inter-process communication (IPC). If the recipient
is on another VM, FAABRIC sends the message to the runtime
on that VM, where it is enqueued.

5.2 Groups when migrating Granules

When migrating Granules across VMs (§3.3), the FAABRIC
runtimes must also update the metadata and queues associated
with Granule groups to which the migrating Granules belong.

Fig. 8 shows how FAABRIC updates a Granule group dur-
ing migration. Initially, the main VM executes one Granule
from the group alongside a Granule from another applica-
tion; the worker VM executes two other Granules from the
group. When the Granule from the other application com-
pletes, it frees up resources on the main VM; when the Gran-
ules reaches a barrier control point, FAABRIC migrates one
of the Granules from the worker VM to the main VM. Before
completing the migration, each FAABRIC runtime updates its
address table and creates or deletes queues to accommodate
the new or departing Granule, respectively.

To avoid issues with message delivery arising from mi-
grated Granules while messages are in-flight or queued,
FAABRIC only inserts barrier control points on message pass-
ing operations where Granules in worker VMs are waiting
for one Granule in the main VM, e.g. MPI’s MPI_Barrier(),
MPI_Allreduce() and MPI_Gather(). This way, FAABRIC
guarantees that there are no messages in-transit.

8

5.3 Collective communication

In addition to simple point-to-point messaging, most message
passing applications make use of collective communication
operations, such as all-reduce and broadcast. These operations
are widely used in distributed ML training through specialised
libraries [12, 49, 66]. FAABRIC uses custom Granule group-
aware implementations of these operations, which minimise
latency by exploiting knowledge of Granule placement to
maximise intra-VM messaging.

Fig. 9 shows the message passing performed by FAABRIC
when application code makes a call to MPI_Allreduce().
1 When FAABRIC creates a Granule group, it selects one
Granule on each VM to be the VM-leader for that VM. Any
messages that need to be sent to Granules on other VMs are
sent by all Granules to their VM-leader, which batches the
messages into single cross-VM requests. All-reduce takes
place in two steps: 2 an initial reduce in which results from
all Granules on each VM are sent to the main VM via their
VM-leader; and 3 a broadcast of the final result to all Gran-
ules, which is delivered via their VM-leader.

FAABRIC’s implementation of collective communication
operations reduces the cross-VM messages to one per re-
mote VM involved in each step. It then uses fast in-memory
queues for the Granule to VM-leader communication. This
approach reduces latency (§6.5) and bandwidth usage, and
enables pipelining: after a Granule has asynchronously mes-
saged its local leader, it can continue execution.

6 Evaluation
Our evaluation answers the following questions: (i) what are
the benefits of using FAABRIC to run scientific applications
on shared VMs? (§6.2); (ii) what is the impact of the cluster
size on FAABRIC? (§6.3); (iii) what is the performance over-
head of executing shared memory applications using Gran-
ules? (§6.4); (iv) what is the performance overhead of exe-
cuting message passing applications using Granules? (§6.5);
and (v) what is the performance overhead when migrating
Granules at runtime? (§6.6)

6.1 Experimental set-up

Implementation. FAABRIC is written in 24,000 lines of
C++20, compiled using clang-13, and available as open-
source at: removed for anonymity. Deployed applications and
all transitive dependencies, e.g. libc, are compiled to Web-
Assembly [16] using clang-13 [51], as part of the FAABRIC
CPP toolchain, also available as open-source at: removed for
anonymity. The batch scheduler is written in 1000 lines of
Python, and is available at: removed for anonymity.

Test-bed. We deploy FAABRIC and OpenMPI on a Kuber-
netes cluster [21] on Azure [31]. The cluster has 32 Stan-
dard_D8_v5 VMs [33] with 8 vCPU cores and 32 GB of
memory. Native OpenMP applications execute using the un-
derlying VMs in. We implement a batch scheduler that moni-

tors cluster resources and executes jobs as soon as there are
enough free resources (in terms of vCPUs).

Workloads. We evaluate FAABRIC with scientific applica-
tions written using OpenMP [45] for shared memory, and
MPI [40] for message passing. We compare these applica-
tions running on FAABRIC against native implementations
running directly on VMs. All OpenMP code is compiled using
clang-13 (OpenMP v4.5) [27], and we use OpenMPI v4.1 [47].
FAABRIC is deployed using Kubernetes (K8s) [21].

6.2 Efficiency of running scientific applications

We explore the efficiency and performance impact of using
FAABRIC to execute applications on a shared VM cluster. As
a workload, we generate a trace of 100 jobs. Each job executes
a scientific application with a different level of parallelism
specified by MPI’s world size (as indicated in the mpirun

command) or by the OMP_NUM_THREADS environment variable.
We generate two traces: one with message passing applica-

tions (mpi), and one with shared memory applications (omp).
For the message passing applications, we use LAMMPS [50,
55], a popular molecular dynamics simulator written in C++
using MPI. We pick the Lennard-Jones (LJ) atomic fluid
simulation with 4 million atoms, as it is one of the standard
benchmarking problems in the LAMMPS suite [56]. For the
shared memory application, we run a dense matrix multipli-
cation (DGEMM), part of the ParRes kernels [48].

As baselines, we want to compare to different VM sizes,
exhaustively exploring the fragmentation space: larger VM
sizes (i.e. higher vCPU counts and larger memory amounts)
yield higher per-job performance but result in more idle vC-
PUs; smaller VM sizes lead to lower per-job performance but
fewer idle vCPUs. To avoid managing different VM pools
with different VM sizes, we deploy a single VM pool (32 Stan-
dard_D8_v5 VMs) and emulate smaller VMs by using 1, 2, 4,
or 8 containers, enforcing an even vCPU/memory split using
K8s resource limits [22]. Different jobs execute in differ-
ent containers: MPI jobs take up dMPI world size

vCPUs per ctr e containers;
OpenMP jobs use 1 container, overcommitting vCPUs to
threads if OMP_NUM_THREADS > vCPUs per container.

We configure the batch scheduler to schedule jobs in se-
quence, as soon as there are sufficient vCPUs. This means that
the scheduling granularity becomes important: if the cluster is
fragmented, jobs will wait for longer in the queue, increasing
makespan; over-fragmenting jobs to pack them tightly will
increase their execution time, also increasing makespan.

Fig. 10 shows the results. For each job trace (mpi in Fig. 10a
and omp in Fig. 10b), we report the total time to execute the
100 jobs (i.e. makespan), the CDF of the percentage of idle
vCPUs in the cluster, and the CDF of job execution times.

In terms of makespan, MPI jobs in FAABRIC have a 13%–
23% lower makespan compared to all fixed-sized baselines ex-
cept for 8-ctr-per-vm. 8-ctr-per-vm is equivalent to running
each MPI process in a separate container. Given the MPI’s
message passing nature, this approach is acceptable and per-

9

granny

1-ctr-per-vm

2-ctr-per-vm

4-ctr-per-vm

8-ctr-per-vm
0

200

400
M

ak
es

pa
n

[s
]

0 20 40 60 80 100
Percentage of idle vCPUs [%]

0.0

0.5

1.0

CD
F

[%
]

0 25 50 75 100 125 150
Execution Time [s]

0.0

0.5

1.0

CD
F

[%
]

(a) Execution of 100 MPI jobs (Requested parallelism distributed uniformly from 4–16 vCPUs/MPI processes)

granny

1-ctr-per-vm

2-ctr-per-vm

4-ctr-per-vm

8-ctr-per-vm
0

500

1000

M
ak

es
pa

n
[s

]

0 20 40 60 80 100
Percentage of idle vCPUs [%]

0.0

0.5

1.0

CD
F

[%
]

0 100 200 300 400 500 600
Execution Time [s]

0.0

0.5

1.0

CD
F

[%
]

(b) Execution of 100 OpenMP jobs (Requested parallelism distributed uniformly from 2–8 vCPUs/OpenMP threads)
Figure 10: Execution breakdown of running a trace with 100 jobs (We report the total time elapsed, i.e. makespan; the CDF of idle vCPUs;
and the CDF of job execution times.)

forms on-par with FAABRIC. For OpenMP jobs, however,
using 1 container per vCPU reduces performance: FAABRIC’s
makespan is 38% lower than 8-ctr-per-vm’s. However,
FAABRIC has between 8% and 25% higher makespan than
the other baselines. This is due to the overhead of FAABRIC’s
shared memory implementation (see §6.4). In summary,
FAABRIC achieves lower makespan than the native baselines,
reducing both user costs and provider under-utilisation.

To understand why FAABRIC reduces the makespan, we
analyse the CDF of the percentage of idle vCPUs, and the
CDF of the job execution time. For MPI jobs, half of time,
FAABRIC has at most 5% of idle vCPUs, whereas the native
baselines leave 10%–30% of vCPUs idle (with the exception
of 8-ctr-per-vm). This shows that FAABRIC better utilised
the available vCPUs by packing and distributing jobs at a finer
granularity using Granules. For OpenMP, 100 jobs are not
enough to saturate the cluster, specially for baselines that over-
commit. Per-job execution time in FAABRIC is on-par with all
baselines for the MPI jobs, with the exception of the last 15%
of jobs – these jobs take longer to execute because they are
over-fragmented. For OpenMP jobs, FAABRIC’s execution
time becomes worse than the baselines due to the overhead of
shared memory executions. In summary, FAABRIC achieves
lower makespan by allocating resources at finer-grained granu-
larity, paying the price of over-fragmenting some jobs, making
them run for longer.

6.3 Scalability

We explore FAABRIC’s scalability with respect to the num-
ber of VMs in the cluster. As a workload, we use traces of
50, 100, 200 and 400 MPI jobs in a cluster with 16, 32, 64
and 128 Standard_D8_v5 VMs, respectively. We measure the
makespan and the average job execution time. By increas-
ing the number of tasks with the cluster size, we expect the
makespan to stay constant. We use the same batch scheduler
configuration and baselines from §6.2.

In Fig. 11, we report, for each cluster size, the make-

16 VMs

50 jobs 32 VMs

100 jobs 64 VMs

200 jobs128 VMs

400 jobs

0

100

200

300

400

500

M
ak

es
pa

n
[s

]

(a) Makespan

16 VMs

50 jobs 32 VMs

100 jobs64 VMs

200 jobs128 VMs

400 jobs

0

50

100

150

200

250

300

Ex
ec

ut
io

n
tim

e
[s

] granny
native-1
native-2

native-4
native-8

(b) Job execution time
Figure 11: Scaling the VM count (We report the makespan to exe-
cute a batch of jobs, which increases linearly with cluster size, and
the distribution of execution times.)

span (Fig. 11a) and the distribution of execution times with a
box plot that includes the median, boxes for the 25th and 75th

percentiles, and whiskers extending 1.5× the inter-quartile
range (Fig. 11b).

FAABRIC achieves a 7%–16%, 13%–23% and 10%–20%
lower makespan for 16, 32 and 64 VMs respectively, because
it manages to utilise the cluster resources more efficiently.
Its makespan is on par with native-8, as explained in §6.2.
Note that the makespan values for 16–64 VMs vary within
5%–10% of each other, which is caused by the different job
sizes in each trace. For 128 VMs, however, the performance
of all deployments degrades due to the implementation of
our centralised batch scheduler, which becomes a bottleneck.
FAABRIC’s makespan also is 5% higher than the baselines be-
cause FAABRIC’s current implementation centrally manages
all registered VMs and their resources.

To explore this performance degradation further, Fig. 11b
shows the distribution of execution times for each baseline
and cluster size using a boxplot. Each job in the trace has a dif-
ferent level of parallelism, and longer traces have more jobs,
introducing randomness. In spite of this randomness, Fig. 11b
shows that the 25th, median, and 75th percentiles are very sim-
ilar across baselines, and cluster sizes. The whiskers are more
variable, as they account for the tails of the distribution. These
results confirm our hypothesis that the performance degrada-
tion in Fig. 11a is due to limitations of FAABRIC’s cluster

10

1 2 3 4 5 6 7 8 10 12 14 16
Number of OpenMP threads

0.0

0.5

1.0

1.5

Sp
ee

d-
up

 [O

pe
nM

P
/ G

ra
nn

y] VM capacity

dgemm

Figure 12: Speed-up executing shared memory applications
(When the number of threads spans multiple VMs, we compare
FAABRIC’s time with OpenMP’s execution time with 8 threads.)

management and batch scheduler implementation, rather than
Granules. These limitations can be overcome with additional
engineering work or by deploying FAABRIC across multiple
64 VM clusters, and load-balancing requests across them.

6.4 Shared memory performance

Next we investigate the performance overhead introduced by
FAABRIC when executing shared memory applications using
OpenMP. We use the same OpenMP application from §6.2:
a dense parallel matrix multiplication (DGEMM) from Par-
ResKernels [48]. DGEMM is computationally-intensive, with
some light use of FAABRIC’s shared memory synchronisation
and coordination primitives.

Fig. 12 shows the speed-up achieved by FAABRIC, com-
puted as the ratio between native OpenMP and FAABRIC’s
execution time. We execute both baselines with different num-
bers of OpenMP threads: native OpenMP cannot be scaled
out, limiting its parallelism to that that of 1 VM (i.e. 8 vCPU
cores, with each thread pinned to one core); FAABRIC can
scale out shared memory applications using Granules. For
distributed execution (i.e. with thread counts greater than 8;
faded bars in Fig. 12), we measure the speed-up as the native
execution time with 8 OpenMP threads divided by FAABRIC’s
execution with the higher thread count.

For DGEMM, FAABRIC is 20%–30% slower than native
OpenMP in a single VM, due to the overhead of performing
floating-point arithmetic in WebAssembly [18]. When scal-
ing out to another VM, FAABRIC achieves the optimal native
performance in one VM with 50% more threads. FAABRIC
achieves a 25% speed-up (over native OpenMP with 8 threads)
when executing with twice as many threads. In summary,
FAABRIC distributes shared memory applications with Gran-
ules, surpassing the performance of a single VM deployment.

6.5 Message passing performance

This experiment explores FAABRIC’s performance overhead
when executing message passing applications using MPI. We
run the same MPI application as in §6.2: the LAMMPS simu-
lator running the Lennard-Jones (LJ) benchmark with 4 mil-
lion atoms. To stress FAABRIC’s communication layer, we
update LAMMPS’ controller example [57] and increase the
synchronisation steps, resulting in three orders of magnitude
more cross-VM messaging. We refer to the LJ benchmark as
compute-bound, and the modified controller one as network-
bound. We also run a subset of the ParRes kernels [48] to

2 4 6 8 10 12 14 16
Number of MPI processes

0.0

0.5

1.0

1.5

Sp
ee

d-
up

 [O

pe
nM

PI
 /

Gr
an

ny
]

compute network

(a) LAMMPS

2 4 6 8 10 12 14 16
Number of MPI processes

0

1

2

Sp
ee

d-
up

 [O

pe
nM

PI
 /

Gr
an

ny
]

nstream reduce p2p stencil

(b) ParRes Kernels
Figure 13: Speed-up executing message passing applications

evaluate specific parts of FAABRIC’s implementation.

Fig. 13 shows the speed-up that FAABRIC achieves, com-
puted as the ratio between OpenMPI’s and FAABRIC’s
execution times. We execute the two LAMMPS simula-
tions (Fig. 13a) and the ParRes kernels (Fig. 13b) with differ-
ent levels of parallelism.

For LAMMPS’ compute-bound benchmark, FAABRIC
achieves a 5%–10% speed-up over OpenMPI. FAABRIC
slightly outperforms OpenMPI due to the faster intra-VM
messaging using shared memory and the locality-aware collec-
tive communication implementation. For the network-bound
benchmark, FAABRIC’s execution time is up to 15% higher
than OpenMPI’s. This slow-down is due to an additional level
of indirection in FAABRIC’s transport layer to support con-
current applications, which becomes a bottleneck with higher
message throughputs.

To analyse the performance of different parts of FAABRIC’s
message passing implementation further, we execute ParRes
kernels [48] for distributed computation. For the point-to-
point messaging kernel (p2p), FAABRIC achieves a 50%–70%
speed-up over OpenMPI because most messages are intra-
VM, and FAABRIC can use in-memory queues. The nstream

kernel updates an array in streaming fashion and synchro-
nises with a barrier, and FAABRIC matches the OpenMPI
performance. For the reduction kernel (reduce), FAABRIC is
between 25% faster and 25% slower in a single VM, and 25%–
50% slower when distributing MPI processes over 2 VMs.
FAABRIC performs worse than OpenMPI when there are
more cross-VM messages, as previously discussed. Finally,
for the stencil kernel, FAABRIC is up to 30% slower because
cross-VM messages dominate execution.

In summary, FAABRIC’s message passing performance is
comparable to that of OpenMPI. FAABRIC performs best for
intra-VM messages, as it can use its in-memory queues, and
worst for cross-VM messages, which add extra overhead.

11

1 VM 20 40 60 80
% of execution when to migrate

0.0

2.5

5.0

7.5

Sp
ee

d-
up

 [N

o
m

ig
. /

 m
ig

.]

(a) All-to-all

1 VM 20 40 60 80
% of execution when to migrate

0.0

0.5

1.0

Sp
ee

d-
up

 [N

o
m

ig
. /

 m
ig

.]

(b) LAMMPS
Figure 14: Speed-up when migrating Granules (We deploy 8 MPI
processes fragmented across two VMs and migrate 4 at runtime. We
report the speed-up compared to not migrating.)

6.6 Migration of Granules

This experiment measures the benefit of migrating Granules
at runtime. As baselines, we run a compute-bound LAMMPS
simulation, and a network-bound all-to-all kernel that per-
forms synchronisation over a vector in a loop. To migrate a
function, FAABRIC must guarantee that there are no messages
in-flight, and it uses calls to barrier synchronisation points to
check for migration opportunities.

Fig. 14 shows the speed-up achieved when migrating. We
force the scheduler to over-fragment the jobs, and then migrate
at 20%, 40%, 60%, or 80% of execution. For reference, we
also include the speed-up for a co-located deployment (1 VM).

For a network-bound kernel, over-fragmenting has a high
cost: the speed-up for 1 VM is 7.5×. By migrating after 20%,
40%, 60%, and 80%, of execution, we achieve speed-ups of
3.5×, 2.7×, 1.7×, and 1.2×, respectively. We conclude that
it is always worth to migrate Granules at runtime for network-
bound applications.

For a compute-bound kernel, over-fragmenting has a lower
cost: the speed-up for 1 VM is 1.2×. This is because the
fragmentation splits 4 processes in 1 VM, and 4 processes
into another, which means that there is substantial intra-VM
messaging. By migrating after 20%, 40%, and 60% of exe-
cution, we achieve speed-ups of 10%, 8%, and 5%, respec-
tively. When migrating after 80% of execution, the costs of
migrating outweigh its benefits, achieving a slow-down of
5%. LAMMPS has large code and data sections, which leads
to larger Granule snapshot, increasing the cost of migration.

7 Related Work

Scientific applications in the cloud. Nowadays, all major
cloud providers offer targeted solutions to support scientific
applications in the cloud [7, 36, 37]. To schedule and execute
these applications, providers deploy batch scheduling solu-
tions [3, 30] inspired by HPC batch schedulers, and there is
related work focuses on optimising scheduling decisions [24].
Instead, FAABRIC focuses on utilising scheduled resources
more efficiently—an orthogonal problem to better scheduling
decisions. Recent work on scheduling for deep learning train-
ing on shared GPU clusters [64] uses traits of the scheduled
resources to improve scheduling decisions, and we plan on
exploring this in the future.

Shared memory and message passing in the cloud. Ho-

plite [66] uses well-known collective communication algo-
rithms for building fault-tolerant task-based distributed sys-
tems. FAABRIC adopts a similar approach: it focuses on dy-
namic group membership without considerations of fault-
tolerance; Ray [39] is a distributed system that unifies task-
parallel and actor-based computations in a single interface. It
offers transparent state and message passing irrespective of
the distribution, together with transparent unlimited scaling.
FAABRIC focuses on sharing resources among multiple users
more efficiently.

Fine-grained distribution in serverless. FAABRIC borrows
techniques from research on serverless runtimes to allow fine-
grained scheduling and distribution of scientific applications.
Faasm [60] and Cloudburst [61] add state to serverless func-
tions, but do not provide generic shared memory required
for multi-threading, nor do they support message passing;
PLASMA [58] supports annotations to specify elasticity con-
straints but only within an actor-based programming model;
Crucial [8] uses Java concurrency abstractions to execute
serverless functions, but it lacks general multi-threading capa-
bility. The lack of communication primitives in serverless has
been recognised as a limitation: SAND [2] includes a mes-
sage bus, but does not provide an associated programming
model to support collective communication.

Checkpointing and Migration. CloudScale [59] automates
fine-grained elastic resource scaling in a shared (multi-tenant)
cluster. CloudScale also uses migration to correct scheduling
or scaling issues. FAABRIC could benefit from being used to-
gether with CloudScale, as it allows for finer-grained resource
management, allowing CloudScale to operate at a thread/pro-
cess level rather than at a VM one. CRIU [11] is a software
tool for checkpointing and restoring processes in userspace.
FAABRIC’s use of WebAssembly means that snapshot can
be obtained more easily without using CRIU or other similar
tools such as DMTCP [14].

8 Conclusions

Cloud computing offers on-demand parallelism that is well-
suited to scientific workloads. Today’s cloud services for sci-
entific applications execute workloads on dedicated VMs,
which reduces providers’ abilities to re-allocate underused
resources. Serverless cloud computing promises to overcome
these issues through the fine-grained allocation of tasks to
resources.

We have described FAABRIC, a new cloud runtime that
transparently distributes scientific workloads at a fine granu-
larity while remaining compatible with the popular OpenMP
and MPI APIs. FAABRIC relies on Granules, which permit the
arbitrary distribution of threads and processes. Its scheduler
allocates Granules in a flexible fashion, allowing Granules
to exchange messages asynchronously and supporting a dis-
tributed shared memory implementation.

12

References
[1] Alexandru Agache, Marc Brooker, Andreea Florescu, Alexandra Ior-

dache, Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-
Maria Popa. Firecracker: Lightweight virtualization for serverless
applications. In Proceedings of the 17th Usenix Conference on Net-
worked Systems Design and Implementation, NSDI’20, page 419–434,
USA, 2020. USENIX Association.

[2] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus
Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. SAND: Towards
High-Performance serverless computing. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18). USENIX Association, 2018.

[3] Amazon Web Services. AWS Batch. https://aws.amazon.com/
batch/, 2021.

[4] Amazon Web Services. AWS Lambda. https://aws.amazon.com/
lambda/, 2021.

[5] Amazon Web Services. AWS Step Functions. https://aws.amazon.
com/step-functions, 2022.

[6] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph,
Randy H Katz, Andrew Konwinski, Gunho Lee, David A Patterson,
Ariel Rabkin, Ion Stoica, et al. Above the clouds: A berkeley view of
cloud computing. 2009.

[7] AWS. Genomics in the cloud. https://aws.amazon.com/health/
genomics/, 2022.

[8] Daniel Barcelona-Pons, Marc Sánchez-Artigas, Gerard París, Pierre
Sutra, and Pedro García-López. On the FaaS Track: Building Stateful
Distributed Applications with Serverless Architectures. In ACM/IFIP
Middleware Conference, 2019.

[9] BioPython. Github - BioPython. https://github.com/biopython/
biopython, 2022.

[10] Broad Institute. Github - gatk. https://github.com/
broadinstitute/gatk, 2022.

[11] CRIU. Checkpoint-Restore in Userspace. https://www.criu.org/
Main_Page, 2021.

[12] Facebook Incubator. Gloo: Collective Communication Library with
Various Primitives for Multi-Machine Training. https://github.
com/facebookincubator/gloo, 2020.

[13] Google. Google Cloud Functions. https://cloud.google.com/
functions, 2021.

[14] Google. Github - DeepVariant. https://github.com/google/
deepvariant, 2022.

[15] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer,
Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai, and
JF Bastien. Bringing the Web up to Speed with WebAssembly. ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), 2017.

[16] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer,
Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai, and
JF Bastien. Bringing the Web up to Speed with WebAssembly. ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), 2017.

[17] Joseph M. Hellerstein, Jose M. Faleiro, Joseph Gonzalez, Johann
Schleier-Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang
Wu. Serverless computing: One step forward, two steps back. ArXiv,
2019.

[18] Abhinav Jangda, Bobby Powers, Emery Berger, and Arjun Guha. Not
So Fast: Analyzing the Performance of WebAssembly vs. Native Code.
In USENIX Annual Technical Conference (USENIX ATC), 2019.

[19] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl
Krauth, Neeraja Yadwadkar, et al. Cloud programming simpli-
fied: A berkeley view on serverless computing. arXiv preprint
arXiv:1902.03383, 2019.

[20] Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and Arkaprava Basu.
Faastlane: Accelerating Function-as-a-Service workflows. In 2021
USENIX Annual Technical Conference (USENIX ATC 21). USENIX
Association, 2021.

[21] Kubernetes. Kubernetes- Production-Grade Container Orchestration.
https://kubernetes.io/, 2022.

[22] Kubernetes. Resource management for pods and contain-
ers. https://kubernetes.io/docs/concepts/configuration/
manage-resources-containers/, 2022.

[23] Hugh C. Lauer and Roger M. Needham. On the duality of operating
system structures. SIGOPS Oper. Syst. Rev., 1979.

[24] Bing Lin, Wenzhong Guo, Xianghan Zheng, Hong Zhang, Chunming
Rong, and Guolong Chen. Optimization scheduling for scientific appli-
cations with different priorities across multiple clouds. In 2014 IEEE
6th International Conference on Cloud Computing Technology and
Science, 2014.

[25] Linux Manual Page. mprotect. https://man7.org/linux/
man-pages/man2/mprotect.2.html, 2022.

[26] Linux Manual Page. pthreads. https://man7.org/linux/
man-pages/man7/pthreads.7.html, 2022.

[27] LLVM Project. LLVM/OpenMP documentation. https://openmp.
llvm.org/, 2022.

[28] MRC-IDE Imperial College London. CovidSim: COVID-19 Simulator.
https://github.com/mrc-ide/covid-sim, 2022.

[29] MDAnalysis. Github - mdanalysis. https://github.com/
MDAnalysis/mdanalysis, 2022.

[30] Microsoft. Azure Batch. https://azure.microsoft.com/en-us/
services/batch/, 2021.

[31] Microsoft. Azure: Cloud Computing Services. https://azure.
microsoft.com/en-us/, 2021.

[32] Microsoft. Azure Functions. https://docs.microsoft.com/en-us/
azure/azure-functions/, 2021.

[33] Microsoft. Azure Virtual Machines. https://docs.microsoft.com/
en-us/azure/virtual-machines/dv2-dsv2-series, 2021.

[34] Microsoft. Azure Batch - Requirements for multi-instance
tasks. https://learn.microsoft.com/en-us/azure/batch/
batch-mpi#requirements-for-multi-instance-tasks, 2022.

[35] Microsoft. Azure Durable Functions. https://docs.
microsoft.com/en-us/azure/azure-functions/durable/
durable-functions-overview, 2022.

[36] Microsoft. Azure Genomics. https://azure.microsoft.com/
en-us/services/genomics/, 2022.

[37] Microsoft. Azure HPC. https://azure.microsoft.com/en-gb/
solutions/high-performance-computing, 2022.

[38] Microsoft. Use multi-instance tasks to run Message Passing Inter-
face (MPI) applications in Batch. https://learn.microsoft.com/
en-us/azure/batch/batch-mpi, 2022.

[39] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,
Michael I. Jordan, and Ion Stoica. Ray: A Distributed Framework
for Emerging AI Applications. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2017.

[40] MPI. MPI Forum. https://www.mpi-forum.org/, 2022.

[41] MPI Forum. All-Reduce. https://www.mpi-forum.org/docs/
mpi-2.2/mpi22-report/node109.htm, 2022.

[42] OpenCV. Github - OpenCV. https://github.com/opencv/opencv,
2022.

[43] OpenFaaS. Serverless Functions Made Simple. https://www.
openfaas.com/, 2022.

13

https://aws.amazon.com/batch/
https://aws.amazon.com/batch/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/step-functions
https://aws.amazon.com/step-functions
https://aws.amazon.com/health/genomics/
https://aws.amazon.com/health/genomics/
https://github.com/biopython/biopython
https://github.com/biopython/biopython
https://github.com/broadinstitute/gatk
https://github.com/broadinstitute/gatk
https://www.criu.org/Main_Page
https://www.criu.org/Main_Page
https://github.com/facebookincubator/gloo
https://github.com/facebookincubator/gloo
https://cloud.google.com/functions
https://cloud.google.com/functions
https://github.com/google/deepvariant
https://github.com/google/deepvariant
https://kubernetes.io/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://man7.org/linux/man-pages/man2/mprotect.2.html
https://man7.org/linux/man-pages/man2/mprotect.2.html
https://man7.org/linux/man-pages/man7/pthreads.7.html
https://man7.org/linux/man-pages/man7/pthreads.7.html
https://openmp.llvm.org/
https://openmp.llvm.org/
https://github.com/mrc-ide/covid-sim
https://github.com/MDAnalysis/mdanalysis
https://github.com/MDAnalysis/mdanalysis
https://azure.microsoft.com/en-us/services/batch/
https://azure.microsoft.com/en-us/services/batch/
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://docs.microsoft.com/en-us/azure/azure-functions/
https://docs.microsoft.com/en-us/azure/azure-functions/
https://docs.microsoft.com/en-us/azure/virtual-machines/dv2-dsv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/dv2-dsv2-series
https://learn.microsoft.com/en-us/azure/batch/batch-mpi#requirements-for-multi-instance-tasks
https://learn.microsoft.com/en-us/azure/batch/batch-mpi#requirements-for-multi-instance-tasks
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://azure.microsoft.com/en-us/services/genomics/
https://azure.microsoft.com/en-us/services/genomics/
https://azure.microsoft.com/en-gb/solutions/high-performance-computing
https://azure.microsoft.com/en-gb/solutions/high-performance-computing
https://learn.microsoft.com/en-us/azure/batch/batch-mpi
https://learn.microsoft.com/en-us/azure/batch/batch-mpi
https://www.mpi-forum.org/
https://www.mpi-forum.org/docs/mpi-2.2/mpi22-report/node109.htm
https://www.mpi-forum.org/docs/mpi-2.2/mpi22-report/node109.htm
https://github.com/opencv/opencv
https://www.openfaas.com/
https://www.openfaas.com/

[44] OpenFOAM. Github - OpenFOAM. https://github.com/
OpenFOAM/OpenFOAM-dev, 2022.

[45] OpenMP. The OpenMP API specification for parallel programming.
https://www.openmp.org/specifications/, 2021.

[46] OpenMP. Reduction Clauses and Directives. https://www.openmp.
org/spec-html/5.0/openmpsu107.html, 2022.

[47] OpenMPI. OpenMPI: Open Source High Performance Computing.
https://www.open-mpi.org/, 2021.

[48] ParResKernels Team. Parallel Research Kernels. https://github.
com/ParRes/Kernels, 2021.

[49] Pitch Patarasuk and Xin Yuan. Bandwidth optimal all-reduce algo-
rithms for clusters of workstations. Journal of Parallel and Distributed
Computing, (2), 2009.

[50] S. Plimpton. Fast parallel algorithms for short-range molecular dynam-
ics. Journal of Computational Physics, 1993.

[51] LLVM Project. Clang: a C language family frontend for LLVM. https:
//clang.llvm.org/, 2022.

[52] CPP Reference. Thread Support Library. https://en.cppreference.
com/w/cpp/thread, 2022.

[53] Herbert E. Robbins. A stochastic approximation method. Annals of
Mathematical Statistics, 2007.

[54] Sandia National Laboratories. Github - LAMMPS. https://github.
com/lammps/lammps, 2020.

[55] Sandia National Laboratories. LAMMPS Molecular Dynamics Simu-
lator. https://lammps.sandia.gov/index.html, 2020.

[56] Sandia National Laboratories. Benchmarks - LAMMPS Documenta-
tion. https://docs.lammps.org/Speed_bench.html, 2022.

[57] Sandia National Laboratories. Examples - LAMMPS Documentation.
https://docs.lammps.org/Examples.html, 2022.

[58] Bo Sang, Pierre-Louis Roman, Patrick Eugster, Hui Lu, Srivatsan Ravi,
and Gustavo Petri. Plasma: Programmable elasticity for stateful cloud
computing applications. In Proceedings of the Fifteenth European Con-
ference on Computer Systems, EuroSys ’20. Association for Computing
Machinery, 2020.

[59] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes.
Cloudscale: Elastic resource scaling for multi-tenant cloud systems. In
Proceedings of the 2nd ACM Symposium on Cloud Computing, SOCC
’11. Association for Computing Machinery, 2011.

[60] Simon Shillaker and Peter Pietzuch. Faasm: Lightweight isolation for
efficient stateful serverless computing. In USENIX Annual Technical
Conference (USENIX ATC). USENIX Association, 2020.

[61] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann
Schleier-Smith, Joseph E. Gonzalez, Joseph M. Hellerstein, and Alexey
Tumanov. Cloudburst: Stateful functions-as-a-service. Proc. VLDB
Endow., (12), 2020.

[62] su2code. Github - SU2. https://github.com/su2code/SU2, 2022.
[63] TensorFlow. Github - TensorFlow. https://github.com/

tensorflow/tensorflow, 2022.
[64] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang Hou, Zhi

Li, Yihui Feng, Wei Lin, and Yangqing Jia. AntMan: Dynamic scaling
on GPU clusters for deep learning. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20). USENIX
Association, 2020.

[65] Wen Zhang, Vivian Fang, Aurojit Panda, and Scott Shenker. Kappa: A
programming framework for serverless computing. In Proceedings of
the 11th ACM Symposium on Cloud Computing, SoCC ’20. Association
for Computing Machinery, 2020.

[66] Siyuan Zhuang, Zhuohan Li, Danyang Zhuo, Stephanie Wang, Eric
Liang, Robert Nishihara, Philipp Moritz, and Ion Stoica. Hoplite:
Efficient and fault-tolerant collective communication for task-based
distributed systems. In Proceedings of the 2021 ACM SIGCOMM 2021
Conference, SIGCOMM ’21. Association for Computing Machinery,
2021.

14

https://github.com/OpenFOAM/OpenFOAM-dev
https://github.com/OpenFOAM/OpenFOAM-dev
https://www.openmp.org/specifications/
https://www.openmp.org/spec-html/5.0/openmpsu107.html
https://www.openmp.org/spec-html/5.0/openmpsu107.html
https://www.open-mpi.org/
https://github.com/ParRes/Kernels
https://github.com/ParRes/Kernels
https://clang.llvm.org/
https://clang.llvm.org/
https://en.cppreference.com/w/cpp/thread
https://en.cppreference.com/w/cpp/thread
https://github.com/lammps/lammps
https://github.com/lammps/lammps
https://lammps.sandia.gov/index.html
https://docs.lammps.org/Speed_bench.html
https://docs.lammps.org/Examples.html
https://github.com/su2code/SU2
https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow

	1 Introduction
	2 Scientific Applications in Cloud
	2.1 Cloud models for scientific applications
	2.2 Shared memory and message passing APIs
	2.3 Requirements

	3 Executing Threads and Processes
	3.1 Granule abstraction
	3.2 Intercepting execution with control points
	3.3 Migrating Granules across VMs
	3.4 Faabric architecture

	4 Shared Memory Programming
	4.1 Synchronising changes to shared memory
	4.2 Supporting reductions on shared variables
	4.3 Synchronisation primitives

	5 Message Passing
	5.1 Communication in Granule groups
	5.2 Groups when migrating Granules
	5.3 Collective communication

	6 Evaluation
	6.1 Experimental set-up
	6.2 Efficiency of running scientific applications
	6.3 Scalability
	6.4 Shared memory performance
	6.5 Message passing performance
	6.6 Migration of Granules

	7 Related Work
	8 Conclusions

