
Joint Bachelor Thesis in Mobile

Interdisciplinary Higher Education Center (CFIS-UPC)

Using Trusted Execution Environments for

Secure Stream Processing of Medical Data

Spring Semester - May 2019

Author:

Carlos Segarra González1,2

carlos.segarra@csem.ch

Supervisors:

José Adrián Rodŕıguez Fonollosa1

jose.fonollosa@upc.edu

Ricard Delgado-Gonzalo2

ricard.delgado@csem.ch

1 Universitat Politècnica de Catalunya BarcelonaTech, Barcelona, Spain
2 Swiss Center for Electronics and Microtechnology (CSEM), Neuchâtel, CH

In partial fulfillment of the requirements for the

Bachelor’s Degree in Mathematics

and

Bachelor’s Degree in Telecommunications Technologies and Services Engineering

iii

Muchos años después, frente al pelotón de

fusilamiento, el coronel Aureliano Buend́ıa hab́ıa de

recordar aquella tarde remota en que su padre lo

llevó a conocer el hielo. Macondo era entonces una

aldea de veinte casas de barro y cañabrava

construidas a la orilla de un ŕıo de aguas diáfanas

que se precipitaban por un lecho de piedras pulidas,

blancas y enormes como huevos prehistóricos. El

mundo era tan reciente, que muchas cosas carećıan

de nombre, y para mencionarlas hab́ıa que

señalaŕıas con el dedo.

Gabriel Garćıa Márquez, Cien años de soledad

v

Note from the Author

The work here presented is my Bachelor’s Thesis for my joint degree in Mathematics and

Telecommunications Engineering within the Interdisciplinary Higher Education Center (CFIS)

from the Polytechnic University of Catalonia (UPC). It has been developed during a six-month

internship at the Swiss Center for Electronics and Microtechnology (CSEM) under the supervision

of Ricard Delgado-Gonzalo, in the Embedded Software group. Professor José Adrián Rodŕıguez

Fonollosa, from the UPC, has co-advised this project, and has been the official tutor with regard

to the university.

Parts of this work have been included in two different conference papers which have been

accepted and will be published in their respective proceedings. The first one is entitled Secure

Stream Processing for Medical Data [1] and will be presented at the 41st IEEE Engineering

in Medicine and Biology Conference (EMBC ’19) to be held in Berlin, Germany, from July 23-27

2019. It focuses on a particular medical application our work could be used in. The second one

is entitled Using Trusted Execution Environments for Secure Stream Processing of

Medical Data [2] and will be presented in the 19th International Conference on Distributed

Applications and Interoperable Systems (DAIS ’19) to be held in Copenhagen, Denmark, from

June 17-21 2019. It covers our solution’s implementation in-depth and evaluates its performance.

vii

Declaration of Authorship

I hereby declare that, except where specific reference is made to the work of others, this

Bachelor’s thesis has been composed by me and it is based on my own work. None of the contents

of this dissertation have been previously published nor submitted, in whole or in part, to any other

examination in this or any other university.

Signed:

Date:

ix

Acknowledgments

These lines end a five year endeavour, during which I have met people, and learnt things that

will stick with me for the years to come. Many have given me a hand along the way, but there are

a certain few without which this work would have never seen the light. I would like to take this

moment and thank them for their help.

First of all, I would like to thank Ricard Delgado and the Swiss Center for Electronics and Mi-

crotechnology for hosting me during the six month internship that enabled me to focus completely

on my work. Ricard has been an unsurpassable host and, together with Enric Muntané, they made

Neuchâtel feel like a home away from home. Secondly, I would like to thank Valerio Schiavoni from

the University of Neuchâtel. It was him who proposed the initial topic, it was him who provided

the contact with Peter Pietzuch and Pierre-Louis Aublin, who gladly granted me with developer

access to their on-going projects, and it was him who, week in and week out, helped me keep the

bigger picture and paved the way for the personal success this work has been. Lastly, I would like

to thank Professor José Adrián Rodŕıguez Fonollosa for always answering my doubts and helping

me without hesitation.

On a more personal note, I would like to thank my parents for their unconditional love and

support throughout all these years. Without their guidance during decisive moments, I would not

be writing these lines today. I would also like to express my most sincere gratitude to José Andrés,

only he knows what has taken us to be here today, and I owe a good part of it to him. Finally,

I must devote some words to Clara. Even though time might now be scarce, she has taught me

more about myself than I would have learnt in a lifetime without her.

Carlos Segarra González

Neuchâtel, May 13, 2019

xi

Abstract

Using Trusted Execution Environments for Secure Stream Processing

of Medical Data

by Carlos Segarra González

Processing sensitive data, specially medical data produced by body sensors, on third-party un-

trusted clouds is particularly challenging without compromising the privacy of the users generating

it. Typically, these sensors generate large quantities of continuous data in a streaming fashion.

Such vast amount of information must be processed efficiently and securely, even under strong

adversarial models. The recent introduction in the mass-market of consumer-grade processors

with Trusted Execution Environments (TEEs), such as Intel SGX, paves the way to implement

solutions that overcome less flexible approaches, such as those atop homomorphic encryption.

This Bachelor Thesis presents a secure streaming processing system built on top of Intel SGX.

To showcase the viability of this approach, we use it with a system specifically fitted for medical

data. We design and fully implement a prototype system that we evaluate with several realistic

datasets. Our experimental results show that our system introduces a reduced overhead to vanilla

Spark while offering strong additional protection guarantees under powerful attackers and threat

models.

Keywords: TEE, Trusted Hardware, Stream Processing, Intel SGX, Spark

xii

Resum

Using Trusted Execution Environments for Secure Stream Processing

of Medical Data

per Carlos Segarra González

El processat de dades de caràcter personal, especialment aquelles provinents de dominis mèdics,

en servidors remots al núvol, és particularment delicat quan es vol preservar la privacitat dels

usuaris que les generen. Molt habitualment, aquestes dades provenen de petits sensors que l’usuari

du posats i que emeten un flux continu de mesures. Dit volum de mesures no només han de ser

processades de manera eficient, sinó també de manera segura, fins i tot contra hipotètics atacants

amb accés privilegiat a les màquines al núvol. La recent introducció al mercat de processadors

amb Entorns d’Execució Segura (Trusted Execution Environments), com ara Intel SGX, faciliten

la implementació de solucions més flexibles i lleugeres que les basades en esquemes de criptografia

homomòrfica.

Aquest Treball de Final de Grau presenta una plataforma de processament segur de fluxos que

es basa en Intel SGX. Per il•lustrar la viabilitat de la plataforma, la usem en un entorn mèdic.

En el decurs del treball, dissenyem i implementem un sistema prototip que evaluem amb jocs de

dades reals. Els nostres resultats experimentals mostren que la plataforma introdueix un discret

ralentiment en comparació amb la implementació estàndard de Spark, tot oferint un nivell de

protecció adicional per a les dades dels usuaris.

Paraules Clau: Entorns d’Execució Segura, Computació Segura, Processament de Fluxos,

Intel SGX, Spark

xiv

Contents

Note from the Author v

Declaration of Authorship vii

Acknowledgments ix

Abstract xi

List of Figures xvii

List of Tables xix

List of Listings xxi

List of Acronyms xxiii

1 Introduction 3

1.1 Motivation . 3

1.2 Contributions . 4

1.3 Document Structure . 5

2 Background 7

2.1 Technical Background . 7

2.1.1 Trusted Execution Environments and Intel SGX 7

2.1.2 Spark and Spark Streaming . 9

2.1.3 SGX-LKL and SGX-Spark . 9

2.2 Cardiac Analysis . 10

3 Related Work 13

3.1 Stream Processing Engines . 13

3.2 Privacy-Preserving Computation . 13

3.3 Cardiac Monitoring Systems . 14

xv

4 Architecture 15

4.1 Server-Side . 15

4.2 Clients . 17

4.3 Threat Model . 17

4.4 Known Vulnerabilities . 17

5 Implementation 19

5.1 Server Implementation . 19

5.2 Client Implementation . 21

5.3 Deployment . 26

5.3.1 Server Execution Deployment . 26

5.3.2 Client Execution Deployment . 27

5.3.3 Deployment . 30

6 Evaluation 33

6.1 Hardware Settings . 33

6.1.1 Server . 33

6.1.2 Client . 33

6.2 Experimental Configuration . 34

6.3 Analyzed Metrics . 35

6.4 Workload . 36

6.5 Results . 37

6.5.1 Batch Execution . 37

6.5.2 Stream Execution . 37

7 Future Work 41

8 Conclusions 43

Appendix A Implementation Code Snippets 51

A.1 Server-Side Algorithms . 51

A.2 Client-Side Services Source Code . 55

A.3 Deployment Scripts . 64

Appendix B Evaluation Code Snippets 73

xvi

xvii

List of Figures

2.1 Intel SGX execution workflow. 8

2.2 SGX-Spark attacker model and collaborative structure scheme. 9

2.3 Envisioned user-sensor ecosystem. 10

2.4 Schematic representation of an ECG signal showing three normal beats. 11

4.1 Schematic of the system’s main architecture. 16

6.1 Evolution of the average elapsed (execution) time as the input workload increases. . 38

6.2 Evolution of the average batch processing time as we increase the input stream size. 39

xviii

xix

List of Tables

6.1 Different input loads used for Batch Mode (BM) and Stream Mode (SE) 36

xx

xxi

List of Listings

5.1 Snippet illustrating textFileStream functionality. 20

5.2 Snippet illustrating the artificial data generation in the sensor service. 21

5.3 Snippet of the data gathering and file generation in the mqtt-subscriber service. . 22

5.4 Snippet illustrating the local directory monitoring in the producer service. 23

5.5 Snippet illustrating the remote filesystem monitoring in the consumer service. . . . 24

5.6 Main method of the Server-Side Deployment Script. 26

5.7 Client Cluster Deployment Script. 28

5.8 Main entry point for a single execution. 30

6.1 Snippet illustrating a query to Spark’s REST API. 35

A.1 Implementation of the SDNN algorithm. 51

A.2 Implementation of the HRVBands algorithm. 51

A.3 Implementation of the Identity algorithm. 54

A.4 Implementation of the sensor service. 55

A.5 Implementation of the mqtt-subscriber service. 57

A.6 Implementation of the producer service. 59

A.7 Implementation of the consumer service. 61

A.8 Server-Side Deployment Script. 64

A.9 Client Docker Compose Script. 66

A.10 Benchmarking and Experiment Deployment Script. 67

B.1 Python Script to Set Up a Port Forwarding Daemon. 73

B.2 Python Script to Set Up a SSH Tunnel. 74

xxii

xxiii

List of Acronyms

API Application Programing Interface.

DFT Discrete Fourier Transform.

DSM Data Stream Manager.

ECG Electrocardiogram.

HR Heart Rate.

HRV Heart Rate Variability.

IaaS Infrastructure-as-a-Service.

JVM Java Virtual Machine.

LoC Lines of Code.

LSDS Large Scale Data & Systems.

MEE Memory Encryption Engine.

OS Operating System.

PPG Photoplethysmogram.

RHS Right Hand Side.

SFTP Secure File Transfer Protocol.

SGX Software Guard eXtensions.

SHM Shared Memory.

SSHFS Secure SHell File System.

xxiv

TA Trusted Application.

TEE Trusted Execution Environment.

TLS Transport Layer Security.

UniNe University of Neuchâtel.

VMM Virtual Machine Monitor.

1 List of Acronyms

List of Acronyms 2

3

Chapter 1

Introduction

1.1 Motivation

Internet of Things (IoT) devices are more and more pervasive in our lives [3]. The number of

devices owned per user is anticipated to increase by 26× by 2020 [4]. These devices continuously

generate a large variety of data. Notable examples include location-based sensors (e.g., GPS),

inertial units (e.g., accelerometers, gyroscopes), weather stations, and, the focus of this paper,

wearable sensors that monitor human-health data (e.g., blood pressure, heart rate, stress).

Also referred as P4 medicine (Predictive, Preventive, Personalized, and Participatory), per-

sonalized health uses this continuous stream of human-health data to make more targeted and

effective diagnoses and treatments [5]. Medical decisions are based on the predicted response of

each particular user. To implement personalized health ecosystems, a fleet of devices monitoring

and processing each person’s vital signs is of crucial importance.

These devices usually have very restricted computing power and are typically very limited in

terms of storage capacity. Hence, this continuous processing of data must be off-loaded elsewhere,

in particular for storage and processing purposes. In doing so, one needs to take into account

potential privacy and security threats that stem inherently from the nature of the data being

generated and processed. Cloud environments represent the ideal environment to offload such

processing. They allow deployers to hand-off the maintenance of the required infrastructure, with

immediate benefit, for instance, in terms of scale-out with the workload.

Processing privacy-sensitive data on untrusted cloud platforms presents a number of challenges.

A malicious (compromised) Cloud operator could observe and leak data, if no countermeasures

are taken beforehand. While there are software solutions that allow to operate on encrypted data

(e.g., partial [6] or full-homomorphic [7] encryption), their current computational overhead makes

them impractical in real-life scenarios [8].

The recent introduction into the mass market of processors with embedded trusted execution

environments (TEEs), e.g., Intel Software Guard Extensions (SGX) [9] (starting from proces-

Chapter 1. Introduction 4

sors with codename Skylake) or ARM TrustZone [10], offer a viable alternative to pure-software

solutions. TEEs protect code and data against several types of attacks, including a malicious

underlying OS, software bugs, or threats from co-hosted applications. The application’s security

boundary becomes the CPU itself. The code is executed at near-native execution speeds inside en-

claves of limited memory capacity. All the major Infrastructure-as-a-Service providers (Google [11],

Amazon [12], IBM [13], Microsoft [14]) are nowadays offering nodes with SGX processors.

We focus on the specific use case of processing data streams generated by health-monitoring

wearable devices on untrusted clouds with available SGX nodes. Algorithms for analyzing car-

diovascular signals are getting more complex and computationally-intensive. Thus, traditional

signal-processing approaches [15] have now evolved to more advanced solutions like deep neural

networks [16, 17]. This increase in computational expenditure has moved the processing towards

centralized centers (i.e., the cloud) with bigger and more dynamic processing power. In this

work we present a system that computes in real time several metrics of the heart-rate variability

(HRV) streaming from wearable sensors. While existing stream processing solutions exist [18, 19],

they either lack support for SGX or, if they do support it, are tied to very specific programming

frameworks and prevent adoption in industrial settings.

1.2 Contributions

In this section we highlight the contributions the work here presented makes, and also the compo-

nents and resources we are given privileged access to.

The contributions of this thesis are twofold. First, we design and implement a system that

can process cardiac signals inside SGX enclaves in untrusted clouds. Our design leverages SGX-

Spark, a stream processing system that exploits SGX to execute stream analytics inside TEEs

(described in detail in §2). Note that our design is flexible enough to be used with different stream

processing systems (as further described later), and other input data streams. Second, we compare

our system against the vanilla, non-secure Spark. We perform an exhaustive assessment on the

introduced overhead, and we conclude that the introduced slow-down factor is reasonable even for

large datasets and high workloads. What leads us to conclude that the technology is almost ready

for production environments.

As introduced before, our design has SGX-Spark in its processing core. SGX-Spark is a

modification to Spark to run security sensitive code inside SGX (see §2.1). It is an on-going

project in the Large-Scale Data & Systems group from the Imperial College London [20]. We have

been given early-access to the code in order to use it in our platform and provide a performance

assessment.

5 1.3. Document Structure

1.3 Document Structure

The structure of the rest of this thesis is the following one. In Chapter 2 we introduce the

preliminaries required to follow the rest of the sections. We divide it in §2.1 where we introduce the

concepts that surround the design, implementation, and deployment of the system. And §2.2 where

we introduce and motivate the envisioned use-case, and contextualize the data streams we will feed

our streaming platform with. In Chapter 3 we cover the state of the art for privacy preserving

stream processing engines of medical data. In Chapter 4 we first describe our system’s architecture

(§4.1, §4.2) and then we go on to introduce our threat model (§4.3) and our system’s known

vulnerabilities (§4.4). Then, in Chapter 5, we describe how the previously introduced architecture

is implemented (§5.2, §5.1) and deployed (§5.3). A complete and exhaustive evaluation of the

system is then presented in Chapter 6. In particular, we first describe the evaluation context:

hardware settings (§6.1), experiment configuration (§6.2), analyzed metrics (§6.3), and injected

workloads (§6.4). To then present the obtained results in §6.5. Lastly, further research lines and

the thesis’ conclusions are presented in Chapters 7 and 8 respectively.

Chapter 1. Introduction 6

7

Chapter 2

Background

In this chapter we introduce general concepts to better understand the design and implementation

details of our system. Firstly, we introduce the hardware, software and programming frameworks

that we leverage, and then the medical technicalities regarding the data we use and the processing

we make of it. In §2.1, we cover technical aspects exploited in the remaining of this work, specifi-

cally: we describe the concept of Trusted Execution Environment, the operating principles of Intel

SGX and Spark, and lastly we present two key frameworks developed by the Large Scale Data &

Systems [20] group at the Imperial College London, SGX-LKL and SGX-Spark. In §2.2, we

describe the specificities of the data streams from the medical domain our system deals with, how

this data streams are obtained, together with the required processing that our system allows to

offload on an untrusted cloud provider, and how this processing can be useful in a real use case.

2.1 Technical Background

2.1.1 Trusted Execution Environments and Intel SGX

A trusted execution environment (TEE) is an isolated area of a main processor that provides

code and data therein contained with confidentiality and integrity guarantees [21]. Confidentiality

refers to preventing unauthorized parties from accessing sensitive information and integrity to

ensuring that sensitive code and data is not tampered with. An application developed to run

and be deployed in a TEE is called a Trusted Application (TA). Trusted Execution Environments

have already been available for several years in the main CPU vendors’ commodity CPUS. Arm

TrustZone has been part of Arm’s architecture since v6 for Cortex-A processors (2012) and v8

for Cortex-M (2018). Intel R© Software Guard Extensions (SGX) were introduced with the

sixth generation of Intel’s processors codename Skylake in 2015.

In comparison with Arm TrustZone, Intel SGX include a remote attestation protocol, sup-

port multiple trusted applications on the same CPU, its SDK is easier to program with, and there

is a greater variety of programming frameworks to develop SGX-based TAs. Most importantly, all

Chapter 2. Background 8

the major Infrastructure-as-a-Service (IaaS) providers (Google [11], Amazon [12], IBM [13], Mi-

crosoft [14]) are nowadays offering nodes with SGX processors. For these reasons, Intel SGX is

our chosen hardware solution to deploy our platform in.

Untrusted Code

1

Create Enclave

2

Call Trusted

Function

7

3

Trusted Code

Call

Gate

4
Execute

5

Return
6

Figure 2.1: Intel SGX execution workflow.

Intel Software Guard eXtensions are a set of

new instructions and memory access changes

added to Intel’s architecture. These exten-

sions enable applications to create hardware-

protected containers in their address space, re-

ferred to as enclaves. An enclave provides con-

fidentiality and integrity even in the presence

of malicious privileged software such as virtual

machine monitors (VMM), BIOS, or operating

systems (OS) [22]. At initialization time, the

code and data is free for inspection and, once

loaded to the enclave, the latter is measured

(via hashing) and sealed. An application us-

ing an enclave identifies itself through a remote

attestation protocol and, once verified, inter-

acts with the protected region through a call

gate mechanism. The application can also ver-

ify that its secure code is running in a genuine enclave using the same attestation protocol via

platform specific keys.

Services using SGX divide its source code in an untrusted and a trusted part. The former

deployed outside the enclave and the latter inside. Figure 2.1 breaks down the typical execution

workflow of SGX services. After the initial attestation protocol, code in the untrusted region

creates an enclave and securely loads trusted code and data inside (Figure-Ê). Whenever this

untrusted code wants to make use of the enclave, it makes a call to a trusted function (Figure-Ì)

that gets captured by the call gate mechanism and, after performing sanity and integrity checks

(Í), gets executed (Î), the value returned (Ï) and the untrusted code can resume execution

(Ð). It is important to stress that the security perimeter is kept at the CPU package and, as a

consequence, all other software including privileged software or even other enclaves are prevented

from accessing code and data located inside the enclave. In particular, the systems’ main memory

is left untrusted and the traffic between CPU and DRAM over the protected address range is

managed by the Memory Encryption Engine (MEE) [23].

9 2.1. Technical Background

2.1.2 Spark and Spark Streaming

Apache Spark is a cluster-computing framework to develop scalable, fault-tolerant, distributed

applications. It builds on RDDs, resilient distributed datasets [22], a read-only collection dis-

tributed over a cluster that can be rebuilt if one partition is lost. It is implemented in Scala and

provides bindings for Python, Java, SQL and R. Spark Streaming [24] is an extension of

Spark’s core API that enables scalable, high-throughput, fault tolerant stream (mini-batch) pro-

cessing of data streams [25]. We leverage on Spark Streaming to perform file-based streaming, by

monitoring a filesystem interface outside the enclave and processing new files as they are loaded.

In particular, and as detailed later in Chapter 5, we use the Discretized Streams API [18].

2.1.3 SGX-LKL and SGX-Spark

Developed at the Large Scale Data & Systems Group (LSDS) [20] at the Imperial College London,

SGX-LKL [26] is a library OS to run unmodified Linux binaries inside enclaves. It provides sup-

port for complex applications and managed runtimes enabling in-enclave user-level threading, sig-

nal handling, and paging. Namely, it allows the execution of a full Java Virtual Machine (JVM) in-

side an enclave. This feature enables the deployment of Spark, and Spark Streaming applications to

leverage critical computing inside Intel SGX with minimal to no modifications to the application’s

code.

SHM

Spark

Worker

Worker

Enclave

Driver

&

App Entry

Point

Driver

Enclave

T1 · · ·TN

Spark Master

Figure 2.2: SGX-Spark attacker model and col-

laborative structure scheme.

SGX-Spark [27] builds on SGX-LKL. It par-

titions the code of Spark applications to execute

the sensitive parts inside SGX enclaves. Fig-

ure 2.2 depicts its architecture. The engine de-

ploys two collaborative Java Virtual Machines

(JVM), one outside (Figure 2.2, left) and one

inside the enclave (Figure 2.2, right) for the

driver, and two more for each worker deployed

in the cluster. Spark code outside the enclave

accesses only encrypted data. The communica-

tion between the JVMs is kept encrypted and

is performed through the host OS shared mem-

ory (SHM). SGX-Spark provides a compila-

tion toolchain, and it currently supports the

vast majority of the native Spark operators, al-

lowing to transparently deploy and run existing

Spark applications into SGX enclaves. This is,

the user must only compile the source code together with SGX-Spark’s and, as long as the op-

Chapter 2. Background 10

erators used are supported by the framework, execution is seamlessly deployed inside the enclave

with no amendments to the vanilla Spark implementation.

2.2 Cardiac Analysis

The data streams used for the evaluation and the algorithms compiled with SGX-Spark belong

to the medical domain and motivate the real need for confidentiality and integrity. As further

explained in Chapter 4, our use case contemplates a scenario where multiple sensors track the

cardiac activity of different users. The two most standard procedures for monitoring heart activ-

ity are electrocardiograms (ECG) and photoplethysmograms (PPG). ECG-based systems measure

the heart’s electrical activity over time and is the chosen method by chest-based sensors [28].

PPG-based systems measure the variation of blood volume over time using LEDs and photodi-

odes. Although less precise, PPGs are the chosen technique by all wrist-based cardiac monitoring

sensors [29].

In both cases, ECG and PPG based, we contemplate the usage of wearable sensors. Wearable

technologies are electronic devices that are incorporated into items which can comfortably be worn

on the body [30]. Due to space and power constraints, these sensors’ memory, computing power,

and communication capabilities are limited. As a consequence, to be embedded in a functional

ecosystem, they rely on a gateway that forwards the information generated by the sensors to the

cloud. This environment is depicted in Figure 2.3.

Figure 2.3: Envisioned sensor ecosystem composed of: a user, a wearable device, a gateway with
internet connection, and the cloud were results are stored and processed.

The generation of the approximated diagram (ECG or PPG) and the time measures are done

inside the sensor. Figure 2.4 depicts a schematic representation of an ECG and the values streamed

from the sensor to the gateway: R peak’s timestamps and RR intervals.

In our case, we focus on the analysis of the Heart Rate Variability (HRV) [32], that is, the

analysis of the variation in the time intervals between heartbeats (a.k.a. RR intervals). The HRV

11 2.2. Cardiac Analysis

Time (s)

Amplitude (mV)

R0

P1

Q1

S1

T1

R1
R2

gateway://data/data file.csv

t(R1), t(R1) - t(R0)

t(R2), t(R2) - t(R1)

.

.

.

Figure 2.4: Schematic representation of an ECG signal showing three normal beats. A normal
electrocardiogram can be broken down in three waves: a P wave corresponding to the depolar-
ization of the atria, a QRS complex corresponding to the depolarization of the ventricles and a T
wave corresponding to the repolarization of the ventricle [31]. From an ECG the sensor extracts
and streams the R-peaks’ timestamp and the time elapsed between them.

is of utmost importance since it has been shown to be a predictor for myocardial infarction [33, 34].

With healthy individuals’ heart rate (HR) averaging between 60 to 180 beats per minute (bpm),

the average throughput per client is between 23 and 69 bytes per second. Finally, despite our

system being specifically designed for streams with these data features, its modular design (as we

later describe in Chapter 4) makes it easy to adapt to other use-cases.

Chapter 2. Background 12

13

Chapter 3

Related Work

In this Chapter we cover the related work that sets the current State-of-the-Art for privacy pre-

serving stream processing engines of medical data. Together with each piece of work, we provide

a brief description and argue why it has or has not been considered for our project. In §3.1 we

cover the most notable big data stream processing engines that relate with our system. Note that

stream processing is a big field and it is out of the scope of this work to provide a detailed survey.

In §3.2 we introduce relevant privacy-preserving processing engines: both stream and batch based.

Lastly, in §3.3 we cover other approaches at cardiac data monitoring.

3.1 Stream Processing Engines

Stream processing has recently attracted a lot of attention from academia and industry [35, 36, 37].

Apache Spark [24] is arguably the de-facto standard in this domain, by combining batch and stream

processing with a unified API [25]. Apache Spark SQL [38] allows to process structured data by

integrating relational processing with Spark’s functional programming style. Structured stream-

ing [39] leverages Spark SQL and it compares favorably against the discretized counterpart [25] in

terms of performance. However, the former lacks security or privacy guarantees, and hence it was

not considered. Furthermore SGX-Spark only has support for the Discretized Streams API, and

therefore we also rely on it.

3.2 Privacy-Preserving Computation

Opaque [40] is a privacy-preserving distributed analytics system. It leverages Spark SQL and Intel

SGX enclaves to perform computations over encrypted Spark DataFrames. In encryption mode,

Opaque offers security guarantees similar to our system’s. However, (1) the Spark master must be

located in the client side, for it must be trusted. An scenario that does not fit in our multi-client

setting. And (2), it requires changes to the application code, and hence is not transparent to the

Chapter 3. Related Work 14

user. In oblivious mode, i.e., protecting against traffic pattern analysis attacks, it can be up to

46× slower, a slow-down factor not tolerable for the real-time analytics in the scope of our system.

SecureStreams [19] is a reactive framework that exploits Intel SGX to define dataflow processing

by pipelining several independent components. In order to use this framework, the user requires a

good knowledge of the underlying implementation. Moreover, applications must be written in the

Lua programming language, hindering its applicability to legacy systems or third-party programs.

DPBSV [41] is a secure big data stream processing framework that focuses on securing data

transmission from the sensors or clients to the Data Stream Manager (DSM) or server. Its secu-

rity model requires a Public Key Infrastructure (PKI) and a dynamic prime number generation

technique to synchronously update the keys. In spite of using trusted hardware on the DSM end

for key generation and management, the server-side processes all the data in clear, making the

framework not suitable for our security model.

TaLoS [42] is a Transport Layer Security (TLS) [43] library that terminates connections by

maintaining sensitive information inside enclaves. The authors provide custom wrappers for the

most common TLS API calls and securely store users and sessions’ keys inside enclaves. The

embedding with a native Spark, or SGX-Spark, application is not transparent to the end user and

hence why we discard it.

Lastly, homomorphic encryption [44] does not rely on trusted execution environments and

offers the promise of providing privacy-preserving computations over encrypted data. This is, it

generates an encrypted result from two encrypted operands, corresponding to the encrypted value

of operating both operands in plain text. The key feature of the scheme is that, at no point, neither

the operands nor the result are processed in clear. While several works analyzed the feasibility of

homomorphic encryption schemes in cloud environments [45, 46], the performance of homomorphic

operations [47] is far from being pragmatic.

3.3 Cardiac Monitoring Systems

For the specific problem of HRV analysis, while periodic monitoring solutions exist [48], they are

focused on embedded systems. As such, since they off-load computation to third-party cloud

services, these solutions simply overlook the privacy concerns that we consider. Similarly, another

solution [17] uses convolutional networks for the detection of arrhythmias. However, the authors

take no considerations with regard to data security and privacy.

This work is one of the first attempts to building a privacy-preserving real-time streaming

system specifically designed for medical and cardiac data.

Our system fills the existing research gap by proposing a system that leverages Intel SGX

enclaves to compute such analytics over public untrusted clouds without changing the existing

Scala-based source code.

15

Chapter 4

Architecture

The aim of this Chapter is to depict our system’s architecture. A high-level abstraction is presented

in Figure 4.1, where each different component is represented together with the path data follows.

We follow a client-server organization and each functionality is designed to be modular and self-

contained for the ease of deployment, evaluation, scalability and availability.

On general lines, the server-side component is executed on untrusted machines (for instance

nodes on the cloud) where Intel SGX is available. There, the SGX-Spark engine is deployed

and stream processes the data generated by an arbitrary number of clients using a set of medical

algorithms. Each client consists of a sensor and a gateway: the former generates samples in a

continuous fashion, and the latter aggregates them and periodically sends them to the cloud-based

component. Similarly, the gateway fetches the results every fixed time intervals. A filesystem

is mounted at the server-side to interface the interaction between the clients and the processing

engine. Each client data stream is processed in parallel independently of the chosen algorithm,

and results are also stored separately.

The remaining of the chapter is structured as follows: §4.1 details the server-side architecture,

§4.2 does the same with the client-side component, in §4.3 we cover the considered threat model

and the security assumptions we make in the design and lastly in §4.4 we present our project’s

known vulnerabilities.

4.1 Server-Side

The server-side component is made by three different modules: a filesystem interface, the SGX-

Spark engine, and a set of algorithms to analyze HRV. The filesystem interface acts as a landing

point for the batches of data generated by each client and also stores the algorithm results. This

way, the gateway can fetch with the desired frequency the processed information. Currently, the

filesystem is mounted and unmounted, respectively at start-up time and upon the shutdown of the

service. SGX-Spark monitors the directory and processes new data as it is loaded.

Chapter 4. Architecture 16

· · · Client m Client

FileSystem
Interface

SGX-Spark Engine

Host Shared Memory

driver-enclave.sh

driver.sh

worker-enclave.sh

worker.sh

T1 T2 · · · TN

T1 T2 · · · TN

CSEM HRV

+ Identity
+ SDNN
+ HRVBands

sensor

eclipse-mqtt

mqtt-subscriber

consumer producer

Figure 4.1: (Left) Schematic of the system’s main architecture. A set of clients bidirectionally
stream data to a remote server. The interaction is done via a filesystem interface. On the server
side, SGX-Spark performs secure processing using different HRV analysis algorithms. (Right)
Breakdown of a packaged client: it includes a sensor and gateway that wrap four different mi-
croservices (mqtt broker, mqtt-subscriber, consumer, producer) to interact with the remote
end.

The streaming engine and the pool of algorithms are compiled together by the same toolchain,

yet they are independent. A Spark job deployed in standalone mode executes: the master process

for resource management and allocation (not included in Figure 4.1), a driver process that orches-

trates the execution, and an arbitrary number of worker processes executing tasks. In the case of

SGX-Spark jobs, two Java Virtual Machines (JVMs) are deployed per driver and worker process:

one inside an enclave and one outside. The communication between JVMs is kept encrypted and

is done through the host OS shared memory (see Figure 2.2). A process outside the enclave never

sees data in clear since sensitive operations are always executed in secured environments. Note

that, for each newly deployed worker, a new pair of JVMs and a new enclave are also deployed.

SGX-Spark requires that algorithms are compiled together with the engine so that code can

be loaded inside enclaves. However, the specific algorithm that we will execute is currently set at

start-up time. It is important to note that each client has its own dedicated data stream assigned,

hence being able to choose different algorithms. These will be executed concurrently, each yielding

separated results.

17 4.2. Clients

4.2 Clients

The client is a combination of: a sensor that constantly generates data, and a gateway that

interacts with the remote end (see the right hand side (RHS) of Figure 4.1). For evaluation

purposes, the sensor component is replaced by a synthetic data generator that simulates samples.

As introduced in §2.2 and depicted in Figure 2.4, the samples produced correspond to RR intervals

and their timestamps. The data generator (or fake sensor) streams samples to the gateway which

is composed of: a broker and subscriber that receive the samples, a producer that aggregates them,

generates files of a fixed size, and streams them to the filesystem interface, and lastly a consumer

that fetches the processed data from the remote endpoint. To get a grasp on the volume of data a

single client generates, each sample is a couple of bytes and a healthy individual generates between

50 and 180 samples per minute. As a consequence, an average client generates around 230—690

Bytes of data per minute. This is indeed a low throughput but, as shown in Chapter 5, the system

can withhold way higher loads.

4.3 Threat Model

In this Section we cover our threat model and the main security assumptions we make. This is,

what kind of attacker our system is protected from. Vulnerabilities out of the scope of this project,

together with known issues are covered in §4.4. Firstly, we assume that the communication between

the gateway and the filesystem is kept protected (e.g., encrypted) using secure transfer protocols

(e.g. Secure File Transport Protocol (SFTP), more in Chapter 5). Secondly, we trust the whole

client package. Protecting it is out of the scope of this work, but suggestions are given in Chapter

7. Given these assumptions, our threat model is the same as typical systems that rely on SGX.

Specifically, we assume an attacker with access to system’s privileged software such as the OS,

VMM or BIOS. Our security perimeter only includes the internals of the CPU package and the

on-die memory. Most notably, the system’s main memory (DRAM) is left outside our security

perimeter. As a consequence, the traffic between enclave applications and main memory is kept

encrypted and is handled by the MEE [23]. The trusted computing base is Intel’s microcode

and the code loaded at the enclave, which can be measured and integrity checked. It is worth

noting that, any bug or security leak included in the application code loaded in the enclave might

compromise our security model.

4.4 Known Vulnerabilities

The threat model described in §4.3 is the same of SGX. As a consequence, and given our security

assumptions, it is sufficient to look into the known vulnerabilities of the latter. Providing protection

Chapter 4. Architecture 18

from attacks outside of SGX’s threat model is out of the scope of this project. Intel’s MEE

is not designed to be an oblivious RAM, therefore an adversary could perform traffic analysis

attacks [23] against our system. This is, even if communication between the CPU and the DRAM

is kept encrypted, a smart attacker could infer information from patterns in the message exchanges.

However, current work enables oblivious computations on enclaves [40]. In March 2017, Schwarz

et. al. [49] unveiled a side-channel timing attack capable of extracting a full RSA key from an

enclave in under 5 minutes. Not long after, various countermeasures were made available [50,

51]. Speculative execution attacks (Spectre-like [52]) have also proven to be successful against

enclaves [53]. Lastly, Foreshadow [54] is another speculative execution attack stronger than its

predecessors and specifically targeted against Intel SGX.

19

Chapter 5

Implementation

The aim of this chapter is to present the implementation details of our system. Each explanation

is accompanied, when required, by code snippets to further illustrate the rationale behind our

design choices. For the full implementation details we refer to Appendix A. The implementation

we will cover is the one the results presented in Chapter 6 are based on. As a consequence, and in

order to stress-test the system, we replace real sensors with synthetic data generators in the client

package first described in §4.2. All the different components introduced in Chapter 4 are packaged

in sets of Docker containers. Large fleets of concurrent users are then simulated using Docker’s

standalone clusters and mounted using docker-machine.

The rest of the chapter is structured as follows. In §5.1 and §5.2 we cover the implementation de-

tails of the server-side and the client-side component respectively. Re-using Docker-specific nomen-

clature, we will refer to logical isolated functionalities packaged in a container as services. Sets

of services working collaboratively will be gathered and deployed as a component using docker-

compose. Collections (or clusters) of replicated components form swarms using docker-swarm.

Lastly, in §5.3 we cover how each service, component and swarm is deployed.

5.1 Server Implementation

We rely on the original SGX-Spark implementation, and we only modify it to support a different

in-enclave code deployment path, so that the .jar archive is available inside the enclaves and the

shared memory. To do so, we include our newly added module in the project’s pom.xml compilation

file, in the worker and driver initialization scripts and in the enclave generation Makefile so that

code is loaded in the enclave at compilation time. The before-mentioned module contains two

HRV processing algorithms and a benchmarking one: SDNN, HRVBands, and Identity. The SDNN

algorithm computes the standard deviation of NN (RR) intervals in a rolling basis, generating one

output per 10 seconds worth of samples. The HRVBands [55] performs a Discrete Fourier Transform

(DFT) of 10 seconds worth of samples, and computes the power of the low frequency and high

Chapter 5. Implementation 20

frequency components, together with their ratio. Lastly, the Identity algorithm copies the input

to the output file. It is used to provide a baseline on the overhead the system is introducing. All

the application code is implemented in Spark’s binding for the Scala programming language [56].

We choose this particular binding since it is the only one supported by SGX-Spark’s compiler.

To be usable inside SGX enclaves, applications must adhere to the RDD [57] and DStreams [25]

API.

The particular implementation of these algorithms relies on basic Spark Streaming operators,

and their corresponding Scala counterparts. For instance, the filesystem interface is monitored

using DStream’s textFileStream method as exposed in Listing 5.1. There, variables and code

are initialized (lines 3-10) then the input directory is monitored (line 12) and the computation and

output are assigned. Note that data is not processed until the Streaming Context is started via

the start() method (line 22).

1 de f main (args : Array [S t r ing]) {
2 // I n i t i a l i z e v a r i a b l e s and Spark Contexts

3 va l wdwSize = 10

4 va l numClients = args (0) . t o In t

5 va l conf = new SparkConf () . setAppName (”HRV Toolbox − SDNN”)

6 va l sc = new SparkContext (conf)

7 va l s s c = new StreamingContext (sc , Duration (10000))

8

9 // I n i t i a l i z e the Estimate Class

10 va l estimateHRV = new EstimateHRVBands (wdwSize)

11

12 // Monitor Input Di rec tory

13 va l dataStreamVec = f o r (i <− 1 to numClients) y i e l d s s c . t extF i l eSt ream (”csem

/ s r c /main/ r e s o u r c e s / csv /”+i . t oS t r i ng+”/

14 ”)

15 // Estimate

16 va l hrvBandVec = f o r (dS <− dataStreamVec) y i e l d estimateHRV . es t imate (dS)

17 // Save as Output

18 f o r (i <− 1 to numClients) {
19 hrvBandVec (i −1) . saveAsTextFi les (”csem/ s r c /main/ r e s o u r c e s / r e s u l t s /” + i .

t oS t r i ng + ”/sdnn”)

20 }
21 // Star t Stream Proce s s ing

22 s s c . s t a r t ()

23 s s c . awaitTermination ()

24 }

Listing 5.1: Snippet illustrating textFileStream functionality.

Lastly, the implementations of SDNN, HRVBands, and Identity can be found in Listings A.1, A.2,

and A.3 respectively.

21 5.2. Client Implementation

5.2 Client Implementation

Clients correspond to body-sensors strapped to the body of a user working collaboratively with a

smart gateway, sending gathered data to the cloud-based component. In a real deployment, the

sensor service in the client component would be an actual sensor (e.g. HR band, smartwatch, or

optical HR monitoring device) and the gateway would be implemented in a, for instance, Rasp-

berry Pi. For evaluation purposes (see Chapter 6), these services are simulated and virtualized.

This way, we can simulate a situation where multiple clients concurrently use the platform with-

out the hardware burden. As firstly introduced in §4.2, our implementation decouples the client

component into into five different services (see Figure 4.1, right).

1. The sensor service is a Python script that generates sample rate random samples per

second, where a sample is an RR interval and its timestamp, and publishes the information

to the artificial-data topic in a MQTT [58] broker located in the gateway. Listing 5.2

presents the part of the sensor source code where artificial data is generated and published.

The full source code is available in Listing A.4. Note the particularity of the sample gen-

eration procedure. First, sample rate random points in a [0, 1) uniform distribution are

generated (lines 18, 21). Then, current timestamps are inferred from them (line 24) and

intervals are computed as successive differences (line 25). These intervals are, in fact, the

RR intervals.

1 de f loop (sample rate) :

2 ””” Endless Sample Generation

3

4 This module i s the e n d l e s s loop that gene ra t e s <sample rate>

5 new samples per second and p u b l i s h e s them to a MQTT t o p i c .

6

7 Parameters

8 −−−−−−−−−−
9 sample rate : f l o a t

10 How many samples are generated per second

11 ”””

12 k i l l e r = K i l l e r ()

13 g l o b a l CL ID

14 p a s t t s = time . time ()

15 whi le 1 :

16 value = ””

17 # F i r s t we generate <sample rate> timestamps in one second

18 tstamps = [i f o r i in random . uniform (low=time . time () ,

19 high=time . time () + 1 ,

20 s i z e =(sample rate))]

21 tstamps . s o r t ()

22 # Second we compute the i n t e r v a l s between them

Chapter 5. Implementation 22

23 f o r i in tstamps :

24 tmp = datet ime . fromtimestamp (i) . s t r f t i m e (’%Y−%m−%d %H:%M:%S ’)

25 value += tmp+’ , ’+s t r (i n t ((i − p a s t t s) ∗ 1e6))+’ \n ’

26 p a s t t s = i

27 pub l i sh . s i n g l e (” a r t i f i c i a l −data−{}” . format (CL ID) , va lue)

28 time . s l e e p (1)

29 i f k i l l e r . k i l l n o w :

30 pr in t (” Ex i t ing g r a c e f u l l y ! ”)

31 break

Listing 5.2: Snippet illustrating the artificial data generation in the sensor service.

2. The eclipse-mqtt service is the mosquitto [59] implementation of the MQTT broker. We

rely on the public Docker image at Docker Hub [60]. It handles the samples generated

by sensor and delivers them to the mqtt-subscriber when the latter subscribes to the

artificial-data topic.

3. The mqtt-subscriber service is a Python script that subscribes to the artificial-data

MQTT topic and whenever it gathers FILE LINES (line 26) samples it generates a .csv

file at a specified location. The key functionality of the service, sample gathering and file

generation, is illustrated in Listing 5.3. The full service code is available in Listing A.5.

1 de f on message (mosq , obj , msg) :

2 ””” Cal lback method f o r the mosquitto c l i e n t .

3

4 Whenever the MQTT c l i e n t r e c e i v e s a new sample i t t r i g g e r s t h i s method .

5 When the cur rent count reaches the thresho ld , a new csv f i l e i s generated

6 and s to r ed in the l o c a l data d i r e c t o r y .

7

8 Parameters

9 −−−−−−−−−−
10 Parameters are those o f the standard implementation o f the MQTT c l i e n t

11 f o r Python .

12 ”””

13 g l o b a l count

14 g l o b a l c u r r s t r

15 g l o b a l FILE LINES

16 g l o b a l CL ID

17 g l o b a l LOCAL DATA DIR

18 g l o b a l k i l l e r

19 pr in t (” Received message”)

20 dcd msg = msg . payload . decode (” utf−8”) . s p l i t (”\n”)

21 whole msg = [i . s p l i t (” , ”) f o r i in dcd msg i f i != ””]

22 f o r tmp in whole msg :

23 5.2. Client Implementation

23 d = datet ime . s t rpt ime (tmp [0] , ’%Y−%m−%d %H:%M:%S ’)

24 time stamp = time . mktime (d . t imetup le ())

25 r r = tmp [1]

26 i f count == FILE LINES :

27 g l o b a l TS

28 pr in t (” I t took : {} s ” . format (time . time () − TS))

29 c u r r s t r += ” {} ,{} ” . format (time stamp , r r)

30 t s = i n t (time . time () ∗1 e3)

31 f i l ename = ”{}{} ” . format (LOCAL DATA DIR, CL ID)+s t r (t s)+” . csv ”

32 t ry :

33 with open (f i l ename , ”w+”) as f :

34 f . wr i t e (c u r r s t r)

35 except FileNotFoundError as e :

36 i f k i l l e r . k i l l n o w :

37 mosq . d i s connec t ()

38 pr in t (” Ex i t ing g r a c e f u l l y ! ”)

39 break

40 count = 0

41 c u r r s t r = ””

42 e l s e :

43 c u r r s t r += ” {} ,{}\n” . format (time stamp , r r)

44 count += 1

45 e l s e :

46 i f k i l l e r . k i l l n o w :

47 mosq . d i s connec t ()

48 pr in t (” Ex i t ing g r a c e f u l l y ! ”)

Listing 5.3: Snippet of the data gathering and file generation in the mqtt-subscriber service.

4. The producer service is a Python script that monitors a local directory and, whenever a

new file is stored, sends it to the remote filesystem. The monitoring functionality is depicted

in Listing 5.4 and the full source code is available in Listing A.6. We keep track of the current

files in the directory with a dictionary (lines 175 and 180) and we compute the difference

between the pre and the post (line 181). We then transfer the new files over SFTP (line 188).

1 de f monitor (ssh , s f tp , ∗ args) :

2 ””” Sending daemon

3

4 This method s t a r t s an i n f i n i t e loop that every <SEND PERIOD> l o ok s f o r

5 newly added data f i l e s and c o p i e s them to a remote d i r e c t o r y .

6

7 Parameters

8 −−−−−−−−−−
9 ssh : paramiko . SSHClient

10 SSH Cl i en t connected to the remote host .

Chapter 5. Implementation 24

11 s f t p : paramiko . SFTPClient

12 SFTP Cl i en t connected to the remote host .

13 ”””

14 g l o b a l LOCAL DATA DIR

15 path to watch = LOCAL DATA DIR

16 be f o r e = d i c t ([(f , None) f o r f in os . l i s t d i r (path to watch)])

17 g l o b a l SEND PERIOD

18 k i l l e r = K i l l e r ()

19 whi le 1 :

20 time . s l e e p (SEND PERIOD)

21 a f t e r = d i c t ([(f , None) f o r f in os . l i s t d i r (path to watch)])

22 added = [f f o r f in a f t e r i f f not in be f o r e]

23 i f added :

24 f o r f in added :

25 l o c a l f i l e = LOCAL DATA DIR + s t r (f)

26 g l o b a l REMOTE DATA DIR

27 r e m o t e f i l e = REMOTE DATA DIR + ”/” + s t r (f)

28 s f t p . put (l o c a l f i l e , r e m o t e f i l e)

29 os . remove (l o c a l f i l e)

30 # I f the re are a l o t o f f i l e s , not check ing i n s i d e a l s o l e ad s

31 # to e r r o r with code 137

32 i f k i l l e r . k i l l n o w :

33 pr in t (” Ex i t ing g r a c e f u l l y ! ”)

34 break

35 be f o r e = a f t e r

36 i f k i l l e r . k i l l n o w :

37 pr in t (” Ex i t ing g r a c e f u l l y ! ”)

38 break

39 f o r d in os . l i s t d i r (LOCAL DATA DIR) :

40 t m p f i l e = LOCAL DATA DIR + s t r (d)

41 os . remove (t m p f i l e)

Listing 5.4: Snippet illustrating the local directory monitoring in the producer service.

5. Similarly, the consumer service is a Python script that monitors the remote filesystem

and, whenever a result file is stored, fetches it to the local result directory. The monitoring

functionality is illustrated in Listing 5.5 and the whole source code is available in Listing A.7.

It is, in essence, symmetric to the one presented for the producer service. The only difference

is that, since sftp.get() does not support recursive invocations (e.g. -R flags), specific care

must be taken to fetch all the different files placed in the different directories.

1 de f monitor (ssh , s f t p) :

2 ””” Fetching daemon

3

25 5.2. Client Implementation

4 This method s t a r t s an i n f i n i t e loop that every <FETCH PERIOD> l o ok s f o r

5 newly added d i r e c t o r i e s and c o p i e s them to a l o c a l r e s u l t d i r e c t o r y .

6

7 Parameters

8 −−−−−−−−−−
9 ssh : paramiko . SSHClient

10 SSH Cl i en t connected to the remote host .

11 s f t p : paramiko . SFTPClient

12 SFTP Cl i en t connected to the remote host .

13 ”””

14 g l o b a l REMOTE RESULT DIR

15 g l o b a l FETCH PERIOD

16 g l o b a l LOCAL RESULT DIR

17 #pr in t (”CONSUMER: user −> {}” . format (ge tpas s . g e tu s e r ()))

18 path to watch = REMOTE RESULT DIR

19 be f o r e = d i c t ([(f , None) f o r f in s f t p . l i s t d i r (path to watch)])

20 k i l l e r = K i l l e r ()

21 whi le 1 :

22 time . s l e e p (FETCH PERIOD)

23 a f t e r = d i c t ([(f , None) f o r f in s f t p . l i s t d i r (path to watch)])

24 added = [f f o r f in a f t e r i f f not in be f o r e]

25 i f added :

26 f o r f in added :

27 l o c a l d i r = LOCAL RESULT DIR + s t r (f) + ”/”

28 r emote d i r = REMOTE RESULT DIR + ”/” + s t r (f) + ”/”

29 t ry :

30 os . mkdir (l o c a l d i r)

31 g e t a l l (s f tp , remote d ir , l o c a l d i r)

32 except F i l e E x i s t s E r r o r as e :

33 pr in t (” Fetching a f i l e that a l r eady e x i s t s ! ”)

34 be f o r e = a f t e r

35 i f k i l l e r . k i l l n o w :

36 pr in t (” Ex i t ing g r a c e f u l l y ! ”)

37 break

38 f o r d in os . l i s t d i r (LOCAL RESULT DIR) :

39 tmp dir = LOCAL RESULT DIR + d

40 f o r f in os . l i s t d i r (tmp dir) :

41 t m p f i l e = tmp dir + ”/” + f

42 os . remove (t m p f i l e)

43 os . rmdir (tmp dir)

Listing 5.5: Snippet illustrating the remote filesystem monitoring in the consumer service.

All the services implemented in Python, amount to a total of 888 Lines of Code (LoC). As in-

troduced before, for the service deployment we rely on Docker. The corresponding Dockerfiles

Chapter 5. Implementation 26

and docker-compose are presented in §5.3. Furthermore, the deployment of each service is also

wrapped in a Dockerfile and included in an image. Lastly, we remark that the communication

between the client and the server happens via SSH/SFTP to ensure transport layer security when

transferring user’s data.

5.3 Deployment

To ease scalability and reproducibility of both server and client, deployment is orchestrated by a

single script detached from both execution environments. This is done through a combination of

bash scripts that act as entry points for the Dockerfile and docker-compose file. We differentiate

between the server deployment (§5.3.1), the client deployment (§5.3.2) and the overall deployment

and evaluation (§5.3.3).

5.3.1 Server Execution Deployment

Specifying the remote location; the SGX-Spark engine, the streaming algorithm, and the filesys-

tem interface are initialized. Depending on whether we want to enable enclaves or not (SGX MODE,

line 24), a set of scripts (lines 25 and 26) are executed in the remote server using ssh.exec com-

mand(). The script then remains passive until a SIGTERM signal is captured, and all processes are

killed (lines 41-49). A snippet of the main functionality is attached in Listing 5.6 and the full

source code is available in Listing 5.3.1. Note that the code is intended to be launched from a

location different from the server (which we leave untrusted).

1 de f main (ssh , s f t p) :

2 ”””Main execut ion method

3

4 This method conta in s the main deployment o f UC1. I t b a s i c a l l y s t a r t s each

5 and every process , launches the benchmarking , and c l e a n s everyth ing when

6 execut ion has f i n i s h e d .

7

8 Notes

9 −−−−−
10 Al l the s l e e p s are p laced due to exper i enced e r r o r s race c o n d i t i o n s . As a

11 consequence t h e i r arguments are complete ly e m p i r i c a l .

12

13 Arguments

14 −−−−−−−−−
15 ssh : paramiko . SSHClient

16 SSH Cl i en t to the remote s e r v e r .

17 s f t p : paramiko . SFTPClient

27 5.3. Deployment

18 SFTP Cl i en t to the remote s e r v e r .

19 ”””

20 g l o b a l ALGORITHM

21 g l o b a l SGX MODE

22 g l o b a l NUM CLIENTS

23 algo name = ” . / launch−csem−{}. sh {}” . format (ALGORITHM, NUM CLIENTS)

24 i f SGX MODE:

25 s c r i p t l i s t = [” . / master . sh” , ” . / worker . sh” , ” . / worker−enc lave . sh” ,

26 ” . / dr ive r−enc lave . sh” , algo name]

27 e l s e :

28 s c r i p t l i s t = [” . / master . sh” , ” . / worker . sh” , algo name]

29 f o r s c r i p t in s c r i p t l i s t :

30 in , out , e r r = ssh . exec command (”cd sgx−spark ; {} &” . format (s c r i p t))

31 time . s l e e p (3)

32 tmp command = ” dsta t − l −−noco lo r −−noheaders 10 > cpu load . csv ”

33 , out , = ssh . exec command (”cd sgx−spark ; {} &” . format (tmp command))

34 out . r e a d l i n e s ()

35 k i l l e r = K i l l e r ()

36 whi le 1 :

37 time . s l e e p (1)

38 i f k i l l e r . k i l l n o w :

39 pr in t (” K i l l i n g Grace fu l l y ! ”)

40 break

41 f o r s c r i p t in s c r i p t l i s t :

42 , out , = ssh . exec command (” k i l l $ (pgrep −f ’{} ’) ” . format (s c r i p t))

43 out . r e a d l i n e s ()

44 , out , = ssh . exec command (” k i l l $ (pgrep −f ’ java ’) ”)

45 out . r e a d l i n e s ()

46 , out , = ssh . exec command (” k i l l $ (pgrep −f ’ d s ta t ’) ”)

47 out . r e a d l i n e s ()

48 , out , = ssh . exec command (”rm /dev/shm/∗”)

49 out . r e a d l i n e s ()

50 re turn 0

Listing 5.6: Main method of the Server-Side Deployment Script.

5.3.2 Client Execution Deployment

The client deployment procedure is more complicated than the server’s one since we support

executions of variable number of clients, which are instantiated at start-up time. In short, when

the number of clients is set, the platform starts a standalone Docker cluster (or swarm). However,

once started with the scalability tests, we recalled that the number of clients a cluster whose

network relies on Docker’s default bridge adapter can support was too small. At 20 clients, the

Chapter 5. Implementation 28

engine ran out of local IP addresses and executions would systematically fail. As a consequence, we

decided to virtualize a local standalone cluster using docker-machine. This latter functionality

enables the deployment of several Docker engines in a single computing instance. To do so, a

virtual machine must be started for each engine, and special care must be taken to set up the

network, so that all containers are reachable from the others.

Even though the full script is rather long, given its complexity and how crucial it is to the

system’s performance, we attach it entirely in Listing 5.7. We firstly deploy a name discovery

service based on the Consul [61] docker image, the aim of which is to keep track of all the

generated virtual machines, and assign an IP address to each one (lines 27-36). Secondly, we start

dNUM CLIENTS/20e virtual machines and register them with the name discovery service (lines 40-

60). These set of virtual machines will form our Docker Swarm. As a consequence, it is important

to elect one (first by default) as our swarm-master. Note that, in order to speed up the start-up

time, the images for all the client services are compressed and pre-loaded to the virtual machines

(lines 62-66). In third place, we create the overlay network (lines 70-71). Then, the local directories

for each client in each virtual machine must be mounted and mirrored outside the virtual machine

so that we can process the results. This is done using SSHF in lines 76-85. Lastly, each client is

deployed using the specific docker-compose file (see Listing A.9).

1 #! / bin /bash

2

3 s e t −a

4

5 # Prede f ined enviroment v a r i a b l e s

6 source docker−env . env

7

8 # Pul l MQTT image

9 docker−compose p u l l mqtt

10

11 # Max Containers per Host

12 MAX CONTAINERS=2

13

14 # Input Parameters

15 SAMPLE RATE=${1}
16 NUM CLIENTS=${2}
17 FILE LINES=${3}
18

19 NUM HOSTS=$ (($ (($NUM CLIENTS / $MAX CONTAINERS)) + 1))

20

21 # To int roduce an a b s t r a c t i o n layer , even i f the re i s no r e a l need f o r an

22 # over lay network (the br idge i t s e l f s u f f i c e s) we c r e a t e an e x t e r n a l machine

23 # anyways . This may be an o v e r k i l l f o r very smal l execut i ons but i s introduced

24 # to pre s e rve s c a l a b i l i t y t ransparent to the user .

29 5.3. Deployment

25

26 # We f i r s t c r e a t e the Consul d i s cove ry s e r v i c e (key/ value s t o r e)

27 docker−machine c r e a t e \
28 −d v i r tua lbox \
29 −−v i r tua lbox−boot2docker−u r l ˜/tmp/ boot2docker . i s o \
30 mh−keys to r e

31 eva l ”$ (docker−machine env mh−keys to r e) ”

32 docker run −d \
33 −−name consu l \
34 −p ” 8500:8500 ” \
35 −h ” consu l ” \
36 consu l agent −s e r v e r −boots t rap −c l i e n t ” 0 . 0 . 0 . 0 ”

37

38 # We then c r e a t e the Swarm c l u s t e r the f i r s t node (id == 1) w i l l be the swarm

39 # manager .

40 f o r HOST ID in $ (seq 1 ${NUM HOSTS}) ;

41 do

42 i f [$HOST ID == 1] ; then

43 docker−machine c r e a t e \
44 −d v i r tua lbox \
45 −−v i r tua lbox−boot2docker−u r l ˜/tmp/ boot2docker . i s o \
46 −−swarm −−swarm−master \
47 −−swarm−d i s cove ry=” consu l : // $ (docker−machine ip mh−keys to r e) :8500 ” \
48 −−engine−opt=” c l u s t e r−s t o r e=consu l : // $ (docker−machine ip mh−keys to r e)

:8500 ” \
49 −−engine−opt=” c l u s t e r−a d v e r t i s e=eth1 :2376 ” \
50 ”sgx−csem−host−$HOST ID”

51 e l s e

52 docker−machine c r e a t e \
53 −d v i r tua lbox \
54 −−v i r tua lbox−boot2docker−u r l ˜/tmp/ boot2docker . i s o \
55 −−swarm \
56 −−swarm−d i s cove ry=” consu l : // $ (docker−machine ip mh−keys to r e) :8500 ” \
57 −−engine−opt=” c l u s t e r−s t o r e=consu l : // $ (docker−machine ip mh−keys to r e)

:8500 ” \
58 −−engine−opt=” c l u s t e r−a d v e r t i s e=eth1 :2376 ” \
59 ”sgx−csem−host−$HOST ID”

60 f i

61 eva l $ (docker−machine env ”sgx−csem−host−$HOST ID”)

62 docker load − i ˜/tmp/consumer . ta r

63 docker load − i ˜/tmp/deployment . ta r

64 docker load − i ˜/tmp/ fake−s enso r . ta r

65 docker load − i ˜/tmp/mqtt−sub . ta r

66 docker load − i ˜/tmp/ producer . ta r

67 done

Chapter 5. Implementation 30

68

69 # We now c r e a t e the over l ay network

70 eva l $ (docker−machine env −−swarm sgx−csem−host−1)

71 docker network c r e a t e −−d r i v e r over l ay −−subnet =10 .0 .0 .0/16 sgx−csem−net

72

73 f o r CL ID in $ (seq 1 ${NUM CLIENTS}) ;

74 do

75 # Prepare environment

76 H ID=$ (($ (($CL ID / $MAX CONTAINERS)) + 1))

77 mkdir −p ${LOCAL DATA DIR}${CL ID}
78 mkdir −p ${LOCAL RESULT DIR}${CL ID}
79 eva l $ (docker−machine env ”sgx−csem−host−$H ID”)

80 docker−machine ssh ”sgx−csem−host−$H ID” mkdir −p ” r e s u l t s /${CL ID}”

81 docker−machine mount ”sgx−csem−host−$H ID” : ”/home/ docker / r e s u l t s /$CL ID” \
82 ${LOCAL RESULT DIR}${CL ID}
83 docker−machine ssh ”sgx−csem−host−$H ID” mkdir −p ” data /${CL ID}”

84 docker−machine mount ”sgx−csem−host−$H ID” : ”/home/ docker / data /$CL ID” \
85 ${LOCAL DATA DIR}${CL ID}
86

87 # Deploy c o n t a i n e r s (Add a −d at the end f o r detach mode)

88 cat ${COMPOSE FILE} | envsubst | docker−compose −f − −p \
89 ”${PROJECT NAME}−${CL ID}” up &

90 s l e e p 5

91 done

92

93 # Return to d e f a u l t environment be f o r e e x i t i n g

94 eva l $ (docker−machine env −u)

Listing 5.7: Client Cluster Deployment Script.

5.3.3 Deployment

The main entry point for the platform’s deployment is included in Listing 5.8. It first loads a set

of environment variables and parses the input (lines 6,8-12), it then deploys the client cluster as

detailed in §5.3.2, and it lastly deploys the server container as detailed in §5.3.1.

1 #! / bin /bash

2

3 s e t −a

4

5 # Prede f ined enviroment v a r i a b l e s

6 source execut ion . env

7

8 ALGORITHM=${1}

31 5.3. Deployment

9 SGX MODE=${2}
10 SAMPLE RATE=${3}
11 NUM CLIENTS=${4}
12 FILE LINES=${5}
13

14 # Deploy Cl ient−Side conta ine r

15 cd ${CLIENT DIR}
16 bash ${CLIENT DIR}/ deploy−c l i e n t . sh ${SAMPLE RATE} ${NUM CLIENTS} ${FILE LINES}
17 cd ${WDIR}
18

19 # Deploy Server−Side Conta iners

20 cat ${COMPOSE FILE} | envsubst | docker−compose −f − −p ”${PROJECT NAME}” up &

Listing 5.8: Main entry point for a single execution.

Additionally, a Python script wraps the launcher presented in Listing 5.8 in order to con-

veniently orchestrate execution batches for evaluation purposes. The same script (attached in

Listing A.10) also includes the queries to obtain the required metrics for the different benchmark-

ing scenarios that we will present in Chapter 6.

Chapter 5. Implementation 32

33

Chapter 6

Evaluation

The aim of this Chapter is to present the experimental evaluation of our system. Firstly, in §6.1

we introduce the hardware used for the benchmarking. We differentiate between the machines

and software used in the Server-side §6.1.1 and those used in the Client-side §6.1.2 since both

components have very different requirements. Secondly, we cover the different experimental con-

figurations considered in §6.2. The latter require a given number of metrics that we present in

§6.3. The workloads used to assess the performance are presented and justified in §6.4. Lastly,

our results are presented and analyzed in §6.5. In a nutshell, our experiments answer the following

questions: (i) is the design of the platform sound? (ii) is our implementation efficient, (iii) what

is the overhead of SGX, and (iv) is it scalable?

6.1 Hardware Settings

6.1.1 Server

The server side is where the filesystem interface is hosted and where the SGX-Spark jobs run.

Therefore, it must be be equipped with Intel SGX and enclave mode must be enabled. The

component runs on a machine located at the University of Neuchâtel’s (UniNe) cluster with Intel R©
Xeon R© CPU E3-1270 v6 @ 3.80 GHz with 8 cores and 64 GiB RAM. We use Ubuntu 16.04 LTS

(kernel 4.19.0-41900-generic) and the official Intel R© SGX driver v2.0 [62], and SGX-LKL [26].

We use an internal release of the SGX-Spark framework, which is currently under development.

6.1.2 Client

For evaluation purposes, and as introduced in the Implementation Chapter (5), the whole set of

clients is deployed as a standalone Docker swarm in a single computing instance. The machine

we are using is located in UniNe’s cluster and is equipped with two AMD EPYC 7281 16-Core

Processor which, taking hyperthreading into consideration, account for a total of 64 cores and 64

Chapter 6. Evaluation 34

GiB RAM. It is deployed with Ubuntu v18.04 LTS (kernel 4.15.0-42-generic). The client containers

are built and deployed using Docker (v18.09.0) and docker-compose (v1.23.2). We use docker-

machine (v0.16.0) with the virtualbox disk image. Each machine hosts 20 clients, the maximum

number of services supported by its local network, and it registers itself to the Swarm via a

name discovery service running on another machine (we rely on Consul [61]). Inter-container

communication is established using the overlay network driver. To optimize start up time we

provide all the images via .tar files that are loaded to the VM, skipping image building time, and

we use a local copy of virtualbox’s disk image. In order to gather the results, we mount a Docker

volume on each client and mirror the VM to the real filesystem using Secure SHell File System

(SSHFS). We pull the latest images available on Docker Hub for the Consul name discovery service

(v1.4) and the eclipse-mosquitto (v1.5) message broker.

6.2 Experimental Configuration

In order to evaluate the overhead SGX-Spark and our system introduce, we compare three

different settings or execution modes:

1. The vanilla Spark mode acts as our baseline. It executes the algorithm using a standard

distribution of the Spark cluster-computing framework.

2. The SGX-Spark w/o Enclaves mode is an SGX-Spark execution but with the enclaves

disabled. This is, the engine sets up the collaborative JVM scheme communicating over

SHM, but neither runs inside an enclave.

3. The SGX-Spark w/ Enclaves mode is the execution mode of our system. It runs unmod-

ified Spark applications leveraging SGX for sensitive computations.

The current implementation of SGX-Spark (still under development) does not provide support for

Spark’s Streaming Context inside enclaves. To overcome this temporary limitation, we evaluate

the SDNN and Identity algorithms in batch and stream mode. For the former, all three different

execution modes are supported. For the latter, we present estimated results for SGX-Spark with

enclaves enabled, basing the computation time on the batch execution times and the additional

overhead against the other modes.

The algorithms are fed with a data file or a data stream, respectively. We increment the input

workload (see §6.4) and measure the impact it has on the execution time (see §6.3). In batch mode,

a result file is generated once the processing is finished. In the streaming scenario, an output file

is generated every ten seconds. In a multi-client scenario, each client has a separated data stream

(or file) and consequently a different result file. A streaming execution consists of 5 minutes of the

service operating with a specific execution mode, client configuration, and input workload. We

execute our experiments 5 times and report average values together with their standard deviations.

35 6.3. Analyzed Metrics

6.3 Analyzed Metrics

To assess performance, scalability, and efficiency, we consider two different metrics depending on

whether we run in batch or stream mode: elapsed time and average batch processing time 1.

1. Elapsed Time measures the time it takes the engine to process the input file. In short,

it is our system’s execution time in batch mode. To obtain this metric it is sufficient with

introducing logs (measuring time) in the application code.

2. Average Batch Processing Time takes the average of the time it takes the platform to

process each 10-second-long chunk of the input data stream. To obtain this value we query

Spark’s REST API [63]. We use Python’s requests package as depicted in Listing 6.1.

Since the server, the clients, and the deployment might be hosted in different locations, the

easiest way to query the REST API instantiated by the master process at the server is to

establish a SSH tunnel and forward the contents in the server’s 4040 port to localhost.

This is done in line 9 using an additional Python script that we attach in Listing B.1 (see

also Listing B.2). Note that in the latter there are configuration-specific parameters. Once

the port forwarding is established, we set up and execute the request (lines 11-14) and then

process the results (lines 16-20). It is worth mentioning that, since Spark keeps an historic of

the batch processing times, it is sufficient with doing only one query right before we terminate

the 5-minute-long execution.

1 de f que ry ba t ch proc e s s i ng (f i l e d i r) :

2 ”””Query Spark ’ s REST API

3

4 This method q u e r i e s sparks API f o r the batch p r o c e s s i n g time . I t f i r s t s

5 l aunches a port forwarding daemon in order to be ab le to perform the

6 r eque s t and then q u e r i e s the in fo rmat ion . Note that t h i s i s done only

7 once at the end o f the execut ion (r i g h t be f o r e k i l l i n g i t) .

8 ”””

9 proc = subproces s . Popen (”python3 port fo rward . py” . s p l i t (” ”))

10 time . s l e e p (2)

11 app id = r e q u e s t s . get (’ http :// l o c a l h o s t :4040/ api /v1/ a p p l i c a t i o n s / ’) . j s on ()

12 app id = app id [0] [’ id ’]

13 req = ’ http :// l o c a l h o s t :4040/ api /v1/ a p p l i c a t i o n s /{}/ jobs / ’ . format (app id)

14 r = r e q u e s t s . get (req) . j son ()

15 t ime format = ”%Y−%m−%dT%H:%M:%S.% f ”

16 t imes = [datet ime . s t rpt ime (r [i] [’ completionTime ’] [: − 3] ,

17 t ime format) . timestamp () −

1 Note that we mention batch in two different contexts: batch execution (one static input and static output) and
streaming batches. Spark Streaming divides live input data in chunks called batches determined by a time duration
(10 seconds in our experiments). The time it takes the engine to process the data therein contained is denoted as
batch processing time.

Chapter 6. Evaluation 36

18 datet ime . s t rpt ime (r [i] [’ submissionTime ’] [: − 3] ,

19 t ime format) . timestamp ()

20 f o r i in r eve r s ed (range (l en (r))) i f ’ completionTime ’ in r [i]]

21 proc . k i l l ()

22 f i l ename = f i l e d i r + ” b a t c h p r o c e s s i n g t i m e s . csv ”

23 with open (f i l ename , ”w+”) as f :

24 f o r num, va l in enumerate (t imes) :

25 i f num == 0 :

26 f . wr i t e (”{} {}” . format (num, va l))

27 e l s e :

28 f . wr i t e (”\n{} {}” . format (num, va l))

29 re turn 0

Listing 6.1: Snippet illustrating a query to Spark’s REST API.

We study the variability of these two parameters as we modify the input workload according to

§6.4.

6.4 Workload

As firstly introduced in Chapter §2.2, the clients inject streams as cardiac signals corresponding to

RR intervals and their timestamps. Each client injects a modest workload into our system (230 -

690 bytes per minute). Hence, to assess the efficiency and the processing time as well as to uncover

Table 6.1: Different input loads used for Batch Mode (BM) and Streaming Mode (SM). We present
the sample rate they simulate (i.e. how many RR intervals are streamed per second) and the overall
file or stream size (Input Load).

Experiment s rate (samples / sec) Input Load

BM - Small Load {44, 89, 178, 356, 712, 1424} {1, 2, 4, 8, 16, 32} kB

SM - Small Load {44, 89, 178, 356, 712, 1424} {1, 2, 4, 8, 16, 32} kB / sec

BM - Big Load {44, 89, 178, 356, 712, 1424} ∗ 1024 {1, 2, 4, 8, 16, 32} MB

SM - Big Load {44, 89, 178, 356, 712, 1424} ∗ 1024 {1, 2, 4, 8, 16, 32} MB / sec

possible bottlenecks, we scale up the output rate of these signals with the goal of inducing more

aggressive workloads into the system. We do so in detriment of medical realism, since arbitrary

input workloads do not relate to any medical situation or condition. Table 6.1 shows the variations

used to evaluate the various execution modes. On the leftmost column, BM and SM stand for batch

and stream mode execution. For each mode, we consider a small load and a big load evaluation

setting. We present both the sample rate parameter passed to the sensor component and the

total workload that amounts to (in multiples of bytes per second).

37 6.5. Results

6.5 Results
In this Section we present and analyze the evolution of the different metrics (§6.3) as we vary the

input workload (§6.4) for the different execution modes (§6.2). We firstly present the results for

batch mode in §6.5.1 and then we do the same for stream mode in §6.5.2.

6.5.1 Batch Execution
The exact configuration for the study of the elapsed time as we vary the input file size is: one

client, one master, one driver, one worker, and a variable input file that progressively increases

in size. We measure the elapsed time of each execution and present the average and standard

deviation of a total of five experiments with the same configuration. Results obtained are included

in Figure 6.1.

From the bar plot we highlight that the variance between execution times among same execution

modes as we increase the input file size is relatively low. However, it exponentiates as we reach

input files of 4-8 MB. We also observe that the slow-down factor between execution modes remains

also quite static until reaching the before mentioned load threshold. SGX-Spark with enclaves

(and hence our system), if input files are smaller than 4 MB, increases execution times x4-5 when

compared to vanilla Spark and x1.5-2 when compared to SGX-Spark with enclaves disabled.

Note that, since a single client in our real use case streams around 230 to 690 bytes per minute,

the current input size limitation already enables several hundreds of concurrent clients (considering

processing time as the only bottleneck).

6.5.2 Stream Execution
Similarly as done in §6.5.1, we scale the load of the data streams that feed the platform and study

the evolution of the average batch processing time. We deploy one worker, one driver and one

client, query the average batch processing time to Spark’s REST API, and present the results for

the Identity and SDNN algorithms. Results are summarized in Figure 6.2.

We obtain results for vanilla Spark, and SGX-Spark without enclaves, and we estimate them

for SGX-Spark with enclaves. We observe similar behaviours as those in Figure 6.1. Variability

among same execution modes when increasing the input stream size is low until reaching values

of around 4 to 8 MB per second. Similarly, the slow-down factor from vanilla Spark to SGX-

Spark without enclaves remains steady at around x2-2.5 until reaching the load threshold. As

a consequence, it is reasonable to estimate that the behaviour of SGX-Spark with enclaves will

preserve a similar slow-down factor (×4-×5) when compared with vanilla Spark in streaming jobs.

Similarly, the execution time will increase linearly with the input load after crossing the load

threshold of 4 MB. Note as well how different average batch processing times are in comparison

with elapsed times, in spite of relatively behaving similar. This is due to the fact that the average

of streaming batch processing times smoothens the initial overhead of starting the Spark engine.

Furthermore, in stream mode, data loading times are hidden under previous batches’ execution

times, and, again, smoothened by the average.

Chapter 6. Evaluation 38

 0

 2

 4

 6

 8

 10

 12

1 2 4 8 16 32A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Input File Size (kB)

Batch Identity

Vanilla Spark
SGX−Spark w/o Enclaves

SGX−Spark w/ Enclaves

 0

 2

 4

 6

 8

 10

 12

 14

1 2 4 8 16 32A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Input File Size (kB)

Batch SDNN

Vanilla Spark
SGX−Spark w/o Enclaves

SGX−Spark w/ Enclaves

 0

 5

 10

 15

 20

 25

 30

1 2 4 8 16 32A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Input File Size (MB)

Batch Identity

Vanilla Spark
SGX−Spark w/o Enclaves

SGX−Spark w/ Enclaves 5
1

.5
4

 s

 0

 10

 20

 30

 40

 50

 60

1 2 4 8 16 32A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Input File Size (MB)

Batch SDNN

Vanilla Spark
SGX−Spark w/o Enclaves

SGX−Spark w/ Enclaves 6
3

.5
3

 s
 �

1
1

4
.7

8
 s

Figure 6.1: Evolution of the average elapsed time, together with its standard deviation, as we
increase the size of the input file. We compare the three different execution modes for each
algorithm. Mode SGX-Spark w/ enclaves is the mode the platform runs in.

39 6.5. Results

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 4 8 16 32A
v
g

.
B

a
tc

h
 P

ro
c
e

s
s
in

g
 T

im
e

 (
s
)

Input Load (kB / s)

Streaming Identity

Vanilla Spark
SGX−Spark w/o Enclaves

SGX−Spark w/ Enclaves (EST)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 4 8 16 32A
v
g

.
B

a
tc

h
 P

ro
c
e

s
s
in

g
 T

im
e

 (
s
)

Input Load (kB / s)

Streaming SDNN

Vanilla Spark
SGX−Spark w/o Enclaves

SGX−Spark w/ Enclaves (EST)

 0

 0.5

 1

 1.5

 2

 2.5

1 2 4 8 16 32A
v
g

.
B

a
tc

h
 P

ro
c
e

s
s
in

g
 T

im
e

 (
s
)

Input Load (MB / s)

Streaming Identity

Vanilla Spark
SGX−Spark w/o Enclaves

SGX−Spark w/ Enclaves (EST)

3
.6

3
 s

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 4 8 16 32A
v
g

.
B

a
tc

h
 P

ro
c
e

s
s
in

g
 T

im
e

 (
s
)

Input Load (MB / s)

Streaming SDNN

Vanilla Spark
SGX−Spark w/o Enclaves

SGX−Spark w/ Enclaves (EST)

5
.4

5
 s

 �

9
.8

1
 s

Figure 6.2: Evolution of the average batch processing time as we increase the input stream size.
We compare the results of the three different execution modes. Note that those corresponding to
SGX-Spark w/ enclaves are estimated basing on the results in Figure 6.1 and the slow-down with
respect to the other execution modes.

Chapter 6. Evaluation 40

41

Chapter 7

Future Work

There are several dimensions along which the current project can be improved. We differentiate

between possible improvements to the current architecture as presented in Chapter 4, and further

research lines to enrich the privacy-preserving computing state of the art.

With regard to the project here presented, there are different issues that would need to be

addressed in the coming work. Firstly, the current SGX-Spark implementation, as mentioned in

Chapter 6, does not yet have support for in-enclave streaming. As a consequence, the estimated

results should be validated once the Streaming API is supported by SGX-Spark. Secondly,

results concerning client scalability should also be included in the evaluation chapter. Following

the deployment technique (standalone Docker cluster) indicated in §5.3, we have managed to run

experiments with hundreds of clients. However, due to time constraints, we have not been able

to provide an exhaustive assessment of the system’s scalability, i.e. how many clients it can run

in parallel, neither of how the overhead introduced by SGX-Spark might affect the number of

clients our platform can handle simultaneously. On the same lines, we would like to study the cost

of deploying our system over public cloud infrastructures such as AWS Confidential Computing.

Lastly, we intend to deploy the platform in a real use case, this is, using real data produced by

real users and streamed through a smart gateway.

On a more general note, we think that our threat model, as presented in §4.3, could be very

much improved by securing the client package. To do so, we envision the use of ARM TrustZone,

widely available in low-power devices (e.g., Raspberry PI), to reduce the TCB in the client-side of

the architecture whilst still leveraging on Trusted Execution Environments. Finally, were TEEs

to be used to secure the client package, a point-to-point, TEE-to-TEE, communication could be

leveraged instead of relying on standard secure transfer protocols. This way, data would never leave

the TEE (to be included in a SFTP package and sent over the network), hence reducing the overall

attack surface. Even though generic TEE-to-TEE point-to-point communication protocols might

not be mature enough yet (for generic TEEs on each endpoint), there are for instance solutions

for enclave-to-enclave [42] secure link establishment.

Chapter 7. Future Work 42

43

Chapter 8

Conclusions

In this thesis, we have presented a proof of concept of a streaming platform that grants executions

on remote, untrusted, servers or clouds with data and code confidentiality and integrity. We

provide end-to-end protection transparently to the developer since we run unmodified Apache

Spark applications inside Intel SGX’s enclaves.

Our design easily scales to different types of data generators, data streams, or even processing

algorithms. It only relies on SGX-Spark, a stream processing framework. However, this depen-

dency could also be overlooked since the server component in our architecture is also pluggable

and modular.

We have quantified the impact on overall system performance when protecting health sensitive

data from an untrusted cloud provider. More precisely, when performing an HRV analysis, for

files smaller than 4 MB, it introduces a x4-5 slow-down when compared to vanilla Apache Spark

both in batch and streaming execution mode. A good part of this slow-down though, is due to the

collaborative JVM structure adopted in SGX-Spark. For a matter of fact, a slow-down of only

x1.5-2 is introduced when moving from SGX-Spark with enclaves disabled to enclave-enabled

mode. Regardless, these results are already competitive when compared to other S.o.A privacy-

preserving processing engines [40]. Therefore, we consider our platform to be mature enough

to be introduced in a production environment, since it complies with current data protection

regulations whilst still maintaining a reasonable performance, and keeping the costs to use the

cloud infrastructure reasonable. Lastly, the work here presented is a work in progress for there are

still several issues to address that could further improve the overall performance and the overall

security of the platform, see Chapter 7.

To put it in a nutshell, this thesis covers the motivation, design, implementation, and analysis

of a proof of concept of a privacy-preserving streaming platform. The quality of the results here

obtained is backed by the publication of two conference papers [1, 2].

Chapter 8. Conclusions 44

45

Bibliography

[1] C. Segarra, E. Muntané, M. Lemay, V. Schiavoni, and R. Delgado-Gonzalo. Secure stream

processing for medical data. In 41st IEEE Engineering in Medicine and Biology Conference

(EMBC ’19), 2019.

[2] C. Segarra, R. Delgado-Gonzalo, M. Lemay, P. Aublin, P. Pietzuch, and V Schiavoni. Us-

ing trusted execution environments for secure stream processing of medical data. In 19th

International Conference on Distributed Applications and Interoperable Systems (DAIS ’19),

2019.

[3] Gartner. Leading the IoT Gartner Insights on how to lead in a connected world. 2017.

[4] M. Barbosa, S. B. Mokhtar, P. Felber, F. Maia, M. Matos, R. Oliveira, E. Riviere, V. Schiavoni,

and S. Voulgaris. SAFETHINGS: Data security by design in the IoT. In IEEE EDCC’17.

[5] G. P. Cumming. Connecting & collaborating - Healthcare for the 21st century. In Proceed-

ings of the Second European Workshop on Practical Aspects of Health Informatics [PAHI],

Trondheim, Norway, 2014.

[6] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EU-

ROCRYPT’99.

[7] C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the AES circuit. In

CRYPTO’12.

[8] Ch. Göttel, R. Pires, I. Rocha, S. Vaucher, P. Felber, M. Pasin, and V. Schiavoni. Security,

performance and energy trade-offs of hardware-assisted memory protection mechanisms. In

IEEE SRDS’18.

[9] V. Costan and S. Devadas. Intel SGX explained. IACR’16.

[10] ARM TrustZone Developer. https://developer.arm.com/technologies/trustzone.

[11] Barb Darrow. Google Is First in Line to Get Intel’s Next-Gen Server Chip. http://for.tn/

2lLdUtD, February 2017. Accessed on: 2018-03-05.

https://developer.arm.com/technologies/trustzone
http://for.tn/2lLdUtD
http://for.tn/2lLdUtD

Bibliography 46

[12] Coming Soon: Amazon EC2 C5 Instances, the next generation of Compute Optimized in-

stances. http://amzn.to/2nmIiH9, November 2016. Accessed on: 2018-03-05.

[13] Data-in-use protection on IBM Cloud using Intel SGX. https://www.ibm.com/blogs/

bluemix/2018/05/data-use-protection-ibm-cloud-using-intel-sgx/. Accessed: 2019-

01-28.

[14] Mark Russinovich. Introducing Azure Confidential Computing. https://azure.microsoft.

com/en-us/blog/introducing-azure-confidential-computing/, September 2017. Ac-

cessed on: 2018-03-05.

[15] A. Kumar, F. Shaik, B. A. Rahim, and D. S. Kumar. Signal and image processing in medical

applications. Springer, 2016.

[16] Z. Xiong, M. Nash, E. Cheng, V. Fedorov, M. Stiles, and J. Zhao. ECG signal classifica-

tion for the detection of cardiac arrhythmias using a convolutional recurrent neural network.

Physiological Measurement, August 2018.

[17] J. Van Zaen, O. Chételat, M. Lemay, E. M. Calvo, and R. Delgado-Gonzalo. Classification

of cardiac arrhythmias from single lead ECG with a convolutional recurrent neural network.

In Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems

and Technologies (BIOSTEC’19), 2019. In press.

[18] Apache Foundation. Spark streaming programming guide. https://spark.apache.org/

docs/2.2.0/streaming-programming-guide.html. Accessed: 2019-01-15.

[19] Aurélien Havet, Rafael Pires, Pascal Felber, Marcelo Pasin, Romain Rouvoy, and Valerio

Schiavoni. SecureStreams: A reactive middleware framework for secure data stream process-

ing. In Proceedings of the 11th ACM International Conference on Distributed and Event-based

Systems, pages 124–133. ACM, 2017.

[20] Imperial College London. Large-Scale Data & Sytems Group at the Imperial College London

website. https://lsds.doc.ic.ac.uk/. Accessed: 2019-01-18.

[21] GlobalPlatform. Introduction to Trusted Execution Environments. Technical report, Glob-

alPlatform, 2018.

[22] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi, Ved-

vyas Shanbhogue, and Uday R. Savagaonkar. Innovative instructions and software model

for isolated execution. In Proceedings of the 2nd International Workshop on Hardware and

Architectural Support for Security and Privacy, HASP ’13, pages 10:1–10:1, New York, NY,

USA, 2013. ACM.

http://amzn.to/2nmIiH9
https://www.ibm.com/blogs/bluemix/2018/05/data-use-protection-ibm-cloud-using-intel-sgx/
https://www.ibm.com/blogs/bluemix/2018/05/data-use-protection-ibm-cloud-using-intel-sgx/
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/
https://spark.apache.org/docs/2.2.0/streaming-programming-guide.html
https://spark.apache.org/docs/2.2.0/streaming-programming-guide.html
https://lsds.doc.ic.ac.uk/

47 Bibliography

[23] Sh. Gueron. A memory encryption engine suitable for general purpose processors. IACR

Cryptology ePrint Archive, 2016:204, 2016.

[24] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica.

Spark: Cluster computing with working sets. In Proceedings of the 2Nd USENIX Conference

on Hot Topics in Cloud Computing, HotCloud’10, pages 10–10, Berkeley, CA, USA, 2010.

USENIX Association.

[25] Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, and Ion Stoica. Discretized

streams: An efficient and fault-tolerant model for stream processing on large clusters. In

Presented as part of the. USENIX, Submitted.

[26] SGX-LKL on Github. https://github.com/lsds/sgx-lkl. Accessed: 2019-01-15.

[27] D3.2 SecureCloud: Specification and Implementation of Reusable Secure Microservices.

https://www.securecloudproject.eu/wp-content/uploads/D3.2.pdf, 2017.

[28] T. Tamura and W. Chen. Seamless Healthcare Monitoring: Advancements in Wearable, At-

tachable, and Invisible Devices. Springer, 2018.

[29] J. Parak, A. Tarniceriu, Ph. Renevey, M. Bertschi, R. Delgado-Gonzalo, and I. Korhonen.

Evaluation of the beat-to-beat detection accuracy of PulseOn wearable optical heart rate

monitor. In Proceedings of the 37th Annual International Conference of the IEEE Engineering

in Medicine and Biology Society (EMBC’15), pages 8099–8102, 2015.

[30] K. Tehrani and M Andrew. Wearable technologies and wearable devices: Everything you need

to know. http://www.wearabledevices.com/what-is-a-wearable-device/. Accessed:

2019-04-25.

[31] L. S. Lilly. Pathophysiology of heart disease: A collaborative project of medical students and

faculty. Lippincott Williams & Wilkins, 2001.

[32] A. Camm, M. Malik, J. Bigger, G. Breithardt, S. Cerutti, R. Cohen, Ph. Coumel, E. Fallen,

H. Kennedy, and R. E. Kleiger. Heart rate variability: Standards of measurement, physio-

logical interpretation and clinical use. Task Force of the European Society of Cardiology and

the North American Society of Pacing and Electrophysiology. Circulation, 93(5):1043–1065,

1996.

[33] R. E. Kleiger, J. P. Miller, J. Th. Bigger, and A. J. Moss. Decreased heart rate variability

and its association with increased mortality after acute myocardial infarction. The American

Journal of Cardiology, 59(4):256–262, 1987.

https://github.com/lsds/sgx-lkl
https://www.securecloudproject.eu/wp-content/uploads/D3.2.pdf
http://www.wearabledevices.com/what-is-a-wearable-device/

Bibliography 48

[34] J. Th. Bigger, J. L. Fleiss, R. C. Steinman, L. M. Rolnitzky, R. E. Kleiger, and J. N. Rottman.

Frequency domain measures of heart period variability and mortality after myocardial infarc-

tion. Circulation, 85:164–171, February 1992.

[35] Alexandros Koliousis, Matthias Weidlich, Raul Castro Fernandez, Alexander L. Wolf, Paolo

Costa, and Peter Pietzuch. SABER: Window-Based Hybrid Stream Processing for Heteroge-

neous Architectures. In Proceedings of the 2016 International Conference on Management of

Data, SIGMOD ’16, pages 555–569, New York, NY, USA, 2016. ACM.

[36] Hongyu Miao, Heejin Park, Myeongjae Jeon, Gennady Pekhimenko, Kathryn S McKinley,

and Felix Xiaozhu Lin. StreamBox: Modern stream processing on a multicore machine. In

2017 USENIX Annual Technical Conference (USENIX ATC 17), pages 617–629, 2017.

[37] Shivaram Venkataraman, Aurojit Panda, Kay Ousterhout, Michael Armbrust, Ali Ghodsi,

Michael J Franklin, Benjamin Recht, and Ion Stoica. Drizzle: Fast and adaptable stream

processing at scale. In Proceedings of the 26th Symposium on Operating Systems Principles,

pages 374–389. ACM, 2017.

[38] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan, M. J.

Franklin, A. Ghodsi, and M. Zaharia. Spark SQL: Relational data processing in Spark. In

Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data,

SIGMOD ’15, pages 1383–1394, New York, NY, USA, 2015. ACM.

[39] M. Armbrust, T. Das, J. Torres, B. Yavuz, S. Zhu, R. Xin, A. Ghodsi, I. Stoica, and M. Za-

haria. Structured streaming: A seclarative API for real-time applications in Apache Spark.

In Proceedings of the 2018 International Conference on Management of Data, SIGMOD ’18,

pages 601–613, New York, NY, USA, 2018. ACM.

[40] Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa, Joseph E. Gonzalez, and

Ion Stoica. Opaque: An oblivious and encrypted distributed analytics platform. In Proceedings

of the 14th USENIX Conference on Networked Systems Design and Implementation, NSDI’17,

pages 283–298, Berkeley, CA, USA, 2017. USENIX Association.

[41] Deepak Puthal, Surya Nepal, Rajiv Ranjan, and Jinjun Chen. DPBSV – An Efficient and

Secure Scheme for Big Sensing Data Stream. In Proceedings of the 2015 IEEE Trustcom/Big-

DataSE/ISPA - Volume 01, TRUSTCOM ’15, pages 246–253, Washington, DC, USA, 2015.

IEEE Computer Society.

[42] Pierre-Louis Aublin, Florian Kelbert, Dan O ’keeffe, Divya Muthukumaran, Christian Priebe,

Joshua Lind, Robert Krahn, Christof Fetzer, David Eyers, and Peter Pietzuch. TaLoS: Se-

cure and transparent tls termination inside sgx enclaves. Technical report, Imperial College

London, 05 2017.

49 Bibliography

[43] T. Dierks and C. Allen. The tls protocol version 1.2, 2008.

[44] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the Forty-

first Annual ACM Symposium on Theory of Computing, STOC ’09, pages 169–178, New York,

NY, USA, 2009. ACM.

[45] Sai Deep Tetali, Mohsen Lesani, Rupak Majumdar, and Todd Millstein. MrCrypt: Static

Analysis for Secure Cloud Computations. In Proceedings of the 2013 ACM SIGPLAN In-

ternational Conference on Object Oriented Programming Systems Languages & Applications,

OOPSLA ’13, pages 271–286, New York, NY, USA, 2013. ACM.

[46] Julian James Stephen, Savvas Savvides, Vinaitheerthan Sundaram, Masoud Saeida Ardekani,

and Patrick Eugster. STYX: Stream Processing with Trustworthy Cloud-based Execution. In

Proceedings of the Seventh ACM Symposium on Cloud Computing, SoCC ’16, pages 348–360,

New York, NY, USA, 2016. ACM.

[47] Christian Göttel, Rafael Pires, Isabelly Rocha, Sebastien Vaucher, Pascal Felber, Marcelo

Pasin, and Valerio Schiavoni. Security, performance and energy trade-offs of hardware-assisted

memory protection mechanisms. In Proceedings of the 37th IEEE Symposium on Reliable

Distributed Systems (SRDS’18), pages 133–142, 2018.

[48] P. Renevey, R. Delgado-Gonzalo, A. Lemkaddem, C. Verjus, S. Combertaldi, B. Rasch,

B. Leeners, F. Dammeier, and F. Kübler. Respiratory and cardiac monitoring at night using

a wrist wearable optical system. In Proceedings of the 40th Annual International Conference

of the IEEE Engineering in Medicine and Biology Society (EMBC’18), pages 2861–2864, July

2018.

[49] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan Mangard.

Malware guard extension: Using sgx to conceal cache attacks. In Michalis Polychronakis and

Michael Meier, editors, Detection of Intrusions and Malware, and Vulnerability Assessment,

pages 3–24, Cham, 2017. Springer International Publishing.

[50] Ferdinand Brasser, Srdjan Capkun, Alexandra Dmitrienko, Tommaso Frassetto, Kari Kosti-

ainen, Urs Müller, and Ahmad-Reza Sadeghi. Dr.sgx: Hardening sgx enclaves against cache

attacks with data location randomization. 09 2017.

[51] Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohrimenko, Istvan Haller, and Manuel

Costa. Strong and efficient cache side-channel protection using hardware transactional mem-

ory. In Proceedings of the 26th USENIX Conference on Security Symposium, SEC’17, pages

217–233, Berkeley, CA, USA, 2017. USENIX Association.

Bibliography 50

[52] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner Haas, Mike

Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval

Yarom. Spectre attacks: Exploiting speculative execution. In 40th IEEE Symposium on

Security and Privacy (S&P’19), 2019.

[53] Spectre Attack SGX on Github. https://github.com/lsds/spectre-attack-sgx. Ac-

cessed: 2019-01-16.

[54] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens,

Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx. Foreshadow: Ex-

tracting the keys to the Intel SGX kingdom with transient out-of-order execution. In Pro-

ceedings of the 27th USENIX Security Symposium. USENIX Association, August 2018.

[55] F. Shaffer and J. P. Ginsberg. An overview of heart rate variability metrics and norms.

Frontiers in Public Health, 5:258, 2017.

[56] The Scala Programming Language. https://www.scala-lang.org/. Accessed: 2019-02-04.

[57] RDD Programming Guide. https://spark.apache.org/docs/latest/

rdd-programming-guide.html. Accessed: 2019-02-04.

[58] MQTT Communication Protocol. http://mqtt.org/. Accessed: 2019-02-04.

[59] Eclipse Paho MQTT Implementation. https://www.eclipse.org/paho/. Accessed: 2019-

02-04.

[60] Eclipse Mosquitto Image on Docker Hub. https://hub.docker.com/_/

eclipse-mosquitto/. Accessed: 2019-01-16.

[61] Consul Image on Docker Hub. https://hub.docker.com/_/consul/. Accessed: 2019-01-16.

[62] Intel Software Guard Extension for Linux OS Driver on GitHub. https://github.com/

intel/linux-sgx-driver. Accessed: 2019-02-05.

[63] Spark Documentation: REST API. https://spark.apache.org/docs/latest/

monitoring.html#rest-api. Accessed: 2019-02-05.

https://github.com/lsds/spectre-attack-sgx
https://www.scala-lang.org/
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
http://mqtt.org/
https://www.eclipse.org/paho/
https://hub.docker.com/_/eclipse-mosquitto/
https://hub.docker.com/_/eclipse-mosquitto/
https://hub.docker.com/_/consul/
https://github.com/intel/linux-sgx-driver
https://github.com/intel/linux-sgx-driver
https://spark.apache.org/docs/latest/monitoring.html#rest-api
https://spark.apache.org/docs/latest/monitoring.html#rest-api

51

Appendix A

Implementation Code Snippets

A.1 Server-Side Algorithms

1 /∗∗ Estimation o f the Standard Deviat ion between NN i n t e r v a l s .

2 ∗
3 ∗ @cons t ruc to r c r e a t e a new es t imat i on s u i t e .

4 ∗ @param wdwSize durat ion in seconds o f the window in which we compute

5 ∗ the standard dev i a t i on .

6 ∗/
7 c l a s s EstimateSDNN (wdwSize : Int) {
8

9 /∗∗ Estimation o f the SDNN with a f i x e d window in streaming mode

10 ∗
11 ∗ @return r e tu rn s a DStream conta in ing a tup l e per l i n e conta in ing the time

12 ∗ block / i n t e r v a l (s t a r t i n g from zero) and the SDNN value .

13 ∗/
14 de f sdnn (dataStream : DStream [St r ing]) : DStream [(Str ing , Double)] = {
15 va l operatorByKey = new StreamOperators (wdwSize)

16 operatorByKey . sumSquareByKey (dataStream)

17 . j o i n (operatorByKey . cardinalByKey (dataStream))

18 . map(udfDivide)

19 . j o i n (operatorByKey . avgByKey(dataStream))

20 . map(udfSqrtDi f)

21 . map(udfTimesWindow)

22 }
23

24 }

Listing A.1: Implementation of the SDNN algorithm.

1 package org . apache . spark . csem . u t i l s

Appendix A. Implementation Code Snippets 52

2

3 import org . apache . spark . rdd .RDD

4 import org . apache . spark . streaming . dstream . DStream

5 import org . apache . spark . csem . u t i l s . StreamOperators

6

7 import s c a l a . math .{pow , cos , s in , Pi , f l o o r }
8

9 /∗∗ Set o f s i g n a l p r o c e s s i n g ope ra to r s de f ined on (K, V) , (Str ing , Float)

10 ∗ DStreams . Current ly the methods inc luded in t h i s s u i t e are : DFT,

11 ∗
12 ∗ @cons t ruc to r c r e a t e a new operator s u i t e .

13 ∗ @param wdwSize durat ion in seconds o f the window in which we compute

14 ∗ the standard dev i a t i on .

15 ∗/
16 c l a s s StreamSigna lProces s ing (wdwSize : Int) extends S e r i a l i z a b l e {
17

18 /∗∗ Preproce s s e s the input data stream (which conta in s l i n e s from the csv

19 ∗ input f i l e) to the f o l l o w i n g format , (k , v) where :

20 ∗ − k : i s the 10 second block i d e n t i f i e r (key)

21 ∗ − v : i t e r a b l e with a l l the r r ’ s from that block indexed .

22 ∗
23 ∗ @return A data stream with the s p e c i f i e d format .

24 ∗/
25 de f preProces s (dataStream : DStream [St r ing]) :

26 DStream [(Str ing , I t e r a b l e [(Double , Int)] , Int)] = {
27 dataStream

28 . map(l i n e => (f l o o r (l i n e . s p l i t (” , ”) (0) . toDouble /10) . t o In t . toStr ing ,

29 l i n e . s p l i t (” , ”) (1) . toDouble))

30 . groupByKey ()

31 . map(l i n e => (l i n e . 1 , l i n e . 2 . zipWithIndex , l i n e . 2 . s i z e))

32 }
33

34 /∗∗ Compute the squared module o f the D i s c r e t e Four i e r Transform o f the

35 ∗ samples conta ined in the DStream .

36 ∗
37 ∗ @return r e tu rn s a DStream conta in ing a tup l e per l i n e conta in ing the time

38 ∗ block / i n t e r v a l (s t a r t i n g from zero) and the sum of a l l the va lue s

39 ∗ in that same i n t e r v a l .

40 ∗/
41 de f modDFT2(dataStream : DStream [St r ing]) :

42 DStream [(Str ing , Double , Double , Double)] = {
43

44 // Aux i l i a ry methods to compute the squared modulus o f the DFT

45 de f cosDFT(l i n e : (Str ing , I t e r a b l e [(Double , Int)] , Int) , f i n d e x : Int) :

46 Double = {

53 A.1. Server-Side Algorithms

47 l i n e . 2

48 . map(x => x . 1 ∗ cos (2∗Pi∗x . 2 ∗ f i n d e x / l i n e . 3))

49 . reduce ((a , b) => (a+b))

50 }
51 de f sinDFT (l i n e : (Str ing , I t e r a b l e [(Double , Int)] , Int) , f i n d e x : Int) :

52 Double = {
53 l i n e . 2

54 . map(x => x . 1 ∗ s i n (2∗Pi∗x . 2 ∗ f i n d e x / l i n e . 3))

55 . reduce ((a , b) => (a+b))

56 }
57

58 // Compute the Square Modulus o f the DFT

59 de f modDFT(value : (Double , Int) ,

60 l i n e : (Str ing , I t e r a b l e [(Double , Int)] , Int)) : (Double , Int) = {
61 (pow(cosDFT(l i n e , va lue . 2) , 2) + pow(sinDFT (l i n e , va lue . 2) , 2) ,

62 value . 2)

63 }
64

65 // Pred i cate to know i f a va lue be longs to the High Freq . Component

66 de f i sHighFreq (va lue : (Double , Int) , c a r d i n a l : Int) : Boolean = {
67 va l thr low = (0 . 1 5 ∗ c a r d i n a l) . t o In t

68 va l th r h i gh = (0 . 4 ∗ c a r d i n a l) . t o In t

69 value . 2 match {
70 case x i f thr low u n t i l th r h i gh conta in s x => t rue

71 case => f a l s e

72 }
73 }
74

75 // Pred i cate to know i f a va lue be longs to the Low Freq . Component

76 de f isLowFreq (va lue : (Double , Int) , c a r d i n a l : Int) : Boolean = {
77 va l thr low = (0 . 0 4 ∗ c a r d i n a l) . t o In t

78 va l th r h i gh = (0 . 1 5 ∗ c a r d i n a l) . t o In t

79 value . 2 match {
80 case x i f thr low u n t i l th r h i gh conta in s x => t rue

81 case => f a l s e

82 }
83 }
84

85 va l tmp = preProces s (dataStream)

86 . map(l => (l . 1 , l . 2 .map(l i s t => modDFT(l i s t , l)) , l . 3))

87

88 // High Frequency Component

89 va l highFreq = tmp

90 . map(l i n e => (l i n e . 1 , l i n e . 2

91 . f i l t e r (x => i sHighFreq (x , l i n e . 3))

Appendix A. Implementation Code Snippets 54

92 . map(x => x . 1)

93 . f o l d L e f t (0 . toDouble) ((a , b) => (a + b)) , l i n e . 3))

94 . map(l i n e => (l i n e . 1 , l i n e . 2 / pow(l i n e . 3 , 2) ∗ 2))

95

96 // Low Frequency Component

97 va l lowFreq = tmp

98 . map(l i n e => (l i n e . 1 , l i n e . 2

99 . f i l t e r (x => isLowFreq (x , l i n e . 3))

100 . map(x => x . 1)

101 . f o l d L e f t (0 . toDouble) ((a , b) => (a + b)) , l i n e . 3))

102 . map(l i n e => (l i n e . 1 , l i n e . 2 / pow(l i n e . 3 , 2) ∗ 2))

103 lowFreq

104 . j o i n (highFreq)

105 . map(x => (x . 1 , x . 2 . 1 , x . 2 . 2 , x . 2 . 1 / x . 2 . 2))

106 }
107 }
108

109

110 /∗∗ Estimation o f the f requency bands g iven a HRV sequence .

111 ∗
112 ∗ @cons t ruc to r c r e a t e a new es t imat i on s u i t e .

113 ∗ @param wdwSize durat ion in seconds o f the window in which we es t imate

114 ∗ the f requency bands .

115 ∗/
116 c l a s s EstimateHRVBands (wdwSize : Int) {
117 /∗∗ Estimation o f the SDNN with a f i x e d window in streaming mode

118 ∗
119 ∗ @return r e tu rn s a DStream conta in ing a tup l e per l i n e conta in ing the time

120 ∗ block / i n t e r v a l (s t a r t i n g from zero) and the SDNN value .

121 ∗/
122 de f e s t imate (dataStream : DStream [St r ing]) :

123 DStream [(Str ing , Double , Double , Double)] = {
124 va l processingByKey = new StreamSigna lProces s ing (wdwSize)

125 processingByKey .modDFT2(dataStream)

126 }
127 }

Listing A.2: Implementation of the HRVBands algorithm.

1 /∗∗ Main a p p l i c a t i o n / c l a s s that launches the i d e n t i t y a p p l i c a t i o n .

[6 4/18 0]

2 ∗
3 ∗ @note We implement the i d e n t i t y a p p l i c a t i o n that

4 ∗ b a s i c a l l y does nothing . This way we w i l l be ab le to measure e a s i l y the

55 A.2. Client-Side Services Source Code

5 ∗ system ’ s overhead .

6 ∗/
7 ob j e c t I d e n t i t y extends Logging {
8

9 de f main (args : Array [S t r ing]) {
10

11 // I n i t i a l i z e Var i ab l e s and Spark Context

12 va l numClients = args (0) . t o In t

13 va l conf = new SparkConf () . setAppName (”HRV Toolbox − I d e n t i t y ”)

14 va l sc = new SparkContext (conf)

15 va l s s c = new StreamingContext (sc , Duration (10000))

16

17 // Map Output to Input

18 va l dataStreamVec = f o r (i <− 1 to numClients) y i e l d s s c . t extF i l eSt ream (”csem/

s r c /main/ r e s o u r c e s / csv /”+i . t oS t r i ng+”/

19 ”)

20 f o r (i <− 1 to numClients) {
21 dataStreamVec (i −1) . saveAsTextFi les (”csem/ s r c /main/ r e s o u r c e s / r e s u l t s /” + i .

t oS t r i ng + ”/ i d e n t i t y ”)

22 }
23

24 s s c . s t a r t ()

25 s s c . awaitTermination ()

26 }
27 }

Listing A.3: Implementation of the Identity algorithm.

A.2 Client-Side Services Source Code

1 ”””Fake MQTT Generator

2

3 This module emulates a s enso r that p ub l i s h e s data to a MQTT t o p i c with a g iven

4 sample ra t e .

5 ”””

6 // Method names are those r equ i r ed to be over r idden by Paho MQTT

7 import paho . mqtt . pub l i sh as pub l i sh

8 import s i g n a l

9 import sys

10 import time

11 from datet ime import datet ime

12 from numpy import random

13

Appendix A. Implementation Code Snippets 56

14

15 // SIGTERM Signa l Handler

16 c l a s s K i l l e r :

17 k i l l n o w = False

18 de f i n i t (s e l f) :

19 s i g n a l . s i g n a l (s i g n a l .SIGTERM, s e l f . e x i t g r a c e f u l l y)

20

21 de f e x i t g r a c e f u l l y (s e l f , signum , frame) :

22 s e l f . k i l l n o w = True

23

24

25 // Cal lback to be executed at s e r v i c e s t a r t up time

26 de f run (sample rate) :

27 i f sample rate == 0 :

28 r a i s e ZeroDiv i s i onError (”Can not s e t a 0 sample ra t e ”)

29 loop (i n t (sample rate))

30

31

32 de f loop (sample rate) :

33 ””” Endless Sample Generation

34

35 This module i s the e n d l e s s loop that gene ra t e s <sample rate>

36 new samples per second and p u b l i s h e s them to a MQTT t o p i c .

37

38 Parameters

39 −−−−−−−−−−
40 sample rate : f l o a t

41 How many samples are generated per second

42 ”””

43 k i l l e r = K i l l e r ()

44 g l o b a l CL ID

45 p a s t t s = time . time ()

46 whi le 1 :

47 value = ””

48 # F i r s t we generate <sample rate> timestamps in one second

49 tstamps = [i f o r i in random . uniform (low=time . time () ,

50 high=time . time () + 1 ,

51 s i z e =(sample rate))]

52 tstamps . s o r t ()

53 # Second we compute the i n t e r v a l s between them

54 f o r i in tstamps :

55 tmp = datet ime . fromtimestamp (i) . s t r f t i m e (’%Y−%m−%d %H:%M:%S ’)

56 value += tmp+’ , ’+s t r (i n t ((i − p a s t t s) ∗ 1e6))+’ \n ’

57 p a s t t s = i

58 pub l i sh . s i n g l e (” a r t i f i c i a l −data−{}” . format (CL ID) , va lue)

57 A.2. Client-Side Services Source Code

59 time . s l e e p (1)

60 i f k i l l e r . k i l l n o w :

61 pr in t (” Ex i t t i ng g r a c e f u l l y ! ”)

62 break

63

64

65 i f name == ” main ” :

66 ””” Standalone entry po int ”””

67 i f l en (sys . argv) < 2 :

68 r a i s e TypeError (”No Sample Rate provided ”)

69 CL ID = sys . argv [2]

70 run (sys . argv [1])

Listing A.4: Implementation of the sensor service.

1 ”””MQTT Subsc r ibe r and CSV Generator

2

3 This module s u b s c r i b e s to the data t o p i c in a MQTT queue and , whenever i t

4 s t a ck s a g iven amount o f samples i t g ene ra t e s a new csv f i l e .

5

6 Att r ibut e s

7 −−−−−−−−−−
8 count : i n t

9 Global counter .

10 c u r r s t r : s t r

11 Global s t r i n g accumulator .

12 ”””

13 import paho . mqtt . c l i e n t as mqtt

14 from datet ime import datet ime

15 import time

16 import s i g n a l

17 import sys

18 import os

19

20

21 count = 0

22 c u r r s t r = ””

23

24

25 c l a s s K i l l e r :

26 k i l l n o w = False

27 de f i n i t (s e l f) :

28 s i g n a l . s i g n a l (s i g n a l .SIGTERM, s e l f . e x i t g r a c e f u l l y)

29

Appendix A. Implementation Code Snippets 58

30 de f e x i t g r a c e f u l l y (s e l f , signum , frame) :

31 s e l f . k i l l n o w = True

32

33

34 de f on message (mosq , obj , msg) :

35 ””” Cal lback method f o r the mosquitto c l i e n t .

36

37 Whenever the MQTT c l i e n t r e c e i v e s a new sample i t t r i g g e r s t h i s method .

38 When the cur rent count reaches the thresho ld , a new csv f i l e i s generated

39 and s to r ed in the l o c a l data d i r e c t o r y .

40

41 Parameters

42 −−−−−−−−−−
43 Parameters are those o f the standard implementation o f the MQTT c l i e n t

44 f o r Python .

45 ”””

46 g l o b a l count

47 g l o b a l c u r r s t r

48 g l o b a l FILE LINES

49 g l o b a l CL ID

50 g l o b a l LOCAL DATA DIR

51 g l o b a l k i l l e r

52 pr in t (” Received message”)

53 dcd msg = msg . payload . decode (” utf−8”) . s p l i t (”\n”)

54 whole msg = [i . s p l i t (” , ”) f o r i in dcd msg i f i != ””]

55 f o r tmp in whole msg :

56 d = datet ime . s t rpt ime (tmp [0] , ’%Y−%m−%d %H:%M:%S ’)

57 time stamp = time . mktime (d . t imetup le ())

58 r r = tmp [1]

59 i f count == FILE LINES :

60 g l o b a l TS

61 pr in t (” I t took : {} s ” . format (time . time () − TS))

62 c u r r s t r += ” {} ,{} ” . format (time stamp , r r)

63 t s = i n t (time . time () ∗1 e3)

64 f i l ename = ”{}{} ” . format (LOCAL DATA DIR, CL ID)+s t r (t s)+” . csv ”

65 t ry :

66 with open (f i l ename , ”w+”) as f :

67 f . wr i t e (c u r r s t r)

68 except FileNotFoundError as e :

69 i f k i l l e r . k i l l n o w :

70 mosq . d i s connec t ()

71 pr in t (” Ex i t t i ng g r a c e f u l l y ! ”)

72 break

73 count = 0

74 c u r r s t r = ””

59 A.2. Client-Side Services Source Code

75 e l s e :

76 c u r r s t r += ” {} ,{}\n” . format (time stamp , r r)

77 count += 1

78 e l s e :

79 i f k i l l e r . k i l l n o w :

80 mosq . d i s connec t ()

81 pr in t (” Ex i t t i ng g r a c e f u l l y ! ”)

82

83

84 de f s ta r t mqt t () :

85 ””” Star t the MQTT c l i e n t ”””

86 g l o b a l CL ID

87 mqttc = mqtt . C l i en t ()

88 mqttc . on message = on message

89 mqttc . connect (” l o c a l h o s t ” , port =1883)

90 mqttc . s ub s c r i b e (” a r t i f i c i a l −data−{}” . format (CL ID))

91 mqttc . l o o p f o r e v e r ()

92

93

94 i f name == ” main ” :

95 ””” Standalone execut ion entry po int ”””

96 t ry :

97 FILE LINES = i n t (sys . argv [1])

98 except IndexError as e :

99 pr in t (”Have not provided a FILE LINES value ! ”)

100 sys . e x i t (1)

101 k i l l e r = K i l l e r ()

102 CL ID = sys . argv [2]

103 LOCAL DATA DIR = sys . argv [3]

104 s ta r t mqt t ()

105 TS = time . time ()

Listing A.5: Implementation of the mqtt-subscriber service.

1 ”””CSV Producer

2

3 This module monitors a l o c a l data d i r e c t o r y and p e r o d i c a l l y sends the newly

4 added csv f i l e s to a remote d i r e c t o r y in order to be proces sed .

5

6 Att r ibut e s

7 −−−−−−−−−−
8 ”””

9 import os

10 import time

Appendix A. Implementation Code Snippets 60

11 import s i g n a l

12 import sys

13 from paramiko import SSHClient , SSHConfig , ProxyCommand , SFTPClient

14 from paramiko . u t i l import l o g t o f i l e

15 from s e r v e r c o n n e c t import s e r v e r c o n n e c t

16

17

18 c l a s s K i l l e r :

19 k i l l n o w = False

20 de f i n i t (s e l f) :

21 s i g n a l . s i g n a l (s i g n a l .SIGTERM, s e l f . e x i t g r a c e f u l l y)

22

23 de f e x i t g r a c e f u l l y (s e l f , signum , frame) :

24 s e l f . k i l l n o w = True

25

26

27 de f monitor (ssh , s f tp , ∗ args) :

28 ””” Sending daemon

29

30 This method s t a r t s an i n f i n i t e loop that every <SEND PERIOD> l o ok s f o r

31 newly added data f i l e s and c o p i e s them to a remote d i r e c t o r y .

32

33 Parameters

34 −−−−−−−−−−
35 ssh : paramiko . SSHClient

36 SSH Cl i en t connected to the remote host .

37 s f t p : paramiko . SFTPClient

38 SFTP Cl i en t connected to the remote host .

39 ”””

40 g l o b a l LOCAL DATA DIR

41 path to watch = LOCAL DATA DIR

42 be f o r e = d i c t ([(f , None) f o r f in os . l i s t d i r (path to watch)])

43 g l o b a l SEND PERIOD

44 k i l l e r = K i l l e r ()

45 whi le 1 :

46 time . s l e e p (SEND PERIOD)

47 a f t e r = d i c t ([(f , None) f o r f in os . l i s t d i r (path to watch)])

48 added = [f f o r f in a f t e r i f f not in be f o r e]

49 i f added :

50 f o r f in added :

51 l o c a l f i l e = LOCAL DATA DIR + s t r (f)

52 g l o b a l REMOTE DATA DIR

53 r e m o t e f i l e = REMOTE DATA DIR + ”/” + s t r (f)

54 s f t p . put (l o c a l f i l e , r e m o t e f i l e)

55 os . remove (l o c a l f i l e)

61 A.2. Client-Side Services Source Code

56 # I f the re are a l o t o f f i l e s , not check ing i n s i d e a l s o l e ad s

57 # to e r r o r with code 137

58 i f k i l l e r . k i l l n o w :

59 pr in t (” Ex i t t i ng g r a c e f u l l y ! ”)

60 break

61 be f o r e = a f t e r

62 i f k i l l e r . k i l l n o w :

63 pr in t (” Ex i t t i ng g r a c e f u l l y ! ”)

64 break

65 f o r d in os . l i s t d i r (LOCAL DATA DIR) :

66 t m p f i l e = LOCAL DATA DIR + s t r (d)

67 os . remove (t m p f i l e)

68

69

70 i f name == ” main ” :

71 ””” Standalone entry po int

72

73 The s c r i p t s i s executed as a subproces s and as a consequence in standa lone

74 mode . This i s done to prevent i t from block ing the r e s t o f the execut ion

75 and to prevent from working with Python ’ s thread ing l i b r a r y .

76 ”””

77 ssh , s f t p = s e r v e r c o n n e c t ()

78 LOCAL DATA DIR = sys . argv [1]

79 REMOTE DATA DIR = sys . argv [2]

80 SEND PERIOD = i n t (sys . argv [3])

81 s f t p . mkdir (REMOTE DATA DIR)

82 monitor (ssh , s f t p)

Listing A.6: Implementation of the producer service.

1 ””” Result Consumer Daemon

2

3 This module p e r i o d i c a l l y f e t c h e s data from a remote d i r e c t o r y conta in ing the

4 r e s u l t s o f the computation and c o p i e s them over SFTP to a l o c a l d i r e c t o r y .

5

6 Att r ibut e s

7 −−−−−−−−−−
8 FETCH PERIOD : i n t

9 How o f t en does the module f e t c h the newly generated d i r e c t o r i e s .

10 ”””

11 import os

12 import ge tpas s

13 import sys

14 import time

Appendix A. Implementation Code Snippets 62

15 import s i g n a l

16 from paramiko import SSHClient , SSHConfig , ProxyCommand , SFTPClient

17 from paramiko . u t i l import l o g t o f i l e

18 from s e r v e r c o n n e c t import s e r v e r c o n n e c t

19

20

21 c l a s s K i l l e r :

22 k i l l n o w = False

23 de f i n i t (s e l f) :

24 s i g n a l . s i g n a l (s i g n a l .SIGTERM, s e l f . e x i t g r a c e f u l l y)

25

26 de f e x i t g r a c e f u l l y (s e l f , signum , frame) :

27 s e l f . k i l l n o w = True

28

29

30 de f g e t a l l (s f tp , remote d ir , l o c a l d i r) :

31 ”””Copy a whole d i r e c t o r y

32

33 The aim o f t h i s module i s to emulate the −r opt ion in scp . Note that t h i s

34 i s not r e c u r s i v e and only works in a f o l d e r with a known and given

35 s t r u c t u r e .

36

37 Parameters

38 −−−−−−−−−−
39 s f t p : paramiko . SFTPClient

40 SFTP Cl i en t connected to the remote host .

41 r emote d i r : s t r

42 Path o f the d i r e c t o r y we are copying from .

43 l o c a l d i r : s t r

44 Path o f the d i r e c t o r y we are copying to .

45 ”””

46 f o r f in s f t p . l i s t d i r (r emote d i r) :

47 r e m o t e f i l e = remote d i r + s t r (f)

48 i f (not f . s t a r t s w i t h (’ . ’)) and (not f . s t a r t s w i t h (’ ’)) :

49 l o c a l f i l e = l o c a l d i r + s t r (f)

50 s f t p . get (r e m o t e f i l e , l o c a l f i l e)

51

52

53 de f monitor (ssh , s f t p) :

54 ””” Fetching daemon

55

56 This method s t a r t s an i n f i n i t e loop that every <FETCH PERIOD> l o ok s f o r

57 newly added d i r e c t o r i e s and c o p i e s them to a l o c a l r e s u l t d i r e c t o r y .

58

59 Parameters

63 A.2. Client-Side Services Source Code

60 −−−−−−−−−−
61 ssh : paramiko . SSHClient

62 SSH Cl i en t connected to the remote host .

63 s f t p : paramiko . SFTPClient

64 SFTP Cl i en t connected to the remote host .

65 ”””

66 g l o b a l REMOTE RESULT DIR

67 g l o b a l FETCH PERIOD

68 g l o b a l LOCAL RESULT DIR

69 #pr in t (”CONSUMER: user −> {}” . format (ge tpas s . g e tu s e r ()))

70 path to watch = REMOTE RESULT DIR

71 be f o r e = d i c t ([(f , None) f o r f in s f t p . l i s t d i r (path to watch)])

72 k i l l e r = K i l l e r ()

73 whi le 1 :

74 time . s l e e p (FETCH PERIOD)

75 a f t e r = d i c t ([(f , None) f o r f in s f t p . l i s t d i r (path to watch)])

76 added = [f f o r f in a f t e r i f f not in be f o r e]

77 i f added :

78 f o r f in added :

79 l o c a l d i r = LOCAL RESULT DIR + s t r (f) + ”/”

80 r emote d i r = REMOTE RESULT DIR + ”/” + s t r (f) + ”/”

81 t ry :

82 os . mkdir (l o c a l d i r)

83 g e t a l l (s f tp , remote d ir , l o c a l d i r)

84 except F i l e E x i s t s E r r o r as e :

85 pr in t (” Fetching a f i l e that a l r eady e x i s t s ! ”)

86 be f o r e = a f t e r

87 i f k i l l e r . k i l l n o w :

88 pr in t (” Ex i t t i ng g r a c e f u l l y ! ”)

89 break

90 f o r d in os . l i s t d i r (LOCAL RESULT DIR) :

91 tmp dir = LOCAL RESULT DIR + d

92 f o r f in os . l i s t d i r (tmp dir) :

93 t m p f i l e = tmp dir + ”/” + f

94 os . remove (t m p f i l e)

95 os . rmdir (tmp dir)

96

97

98 i f name == ” main ” :

99 ””” Standalone entry po int

100

101 The s c r i p t s i s executed as a subproces s and as a consequence in standa lone

102 mode . This i s done to prevent i t from block ing the r e s t o f the execut ion

103 and to prevent myse l f from working with Python ’ s thread ing l i b r a r y .

104 ”””

Appendix A. Implementation Code Snippets 64

105 ssh , s f t p = s e r v e r c o n n e c t ()

106 LOCAL RESULT DIR = sys . argv [1]

107 REMOTE RESULT DIR = sys . argv [2]

108 s f t p . mkdir (REMOTE RESULT DIR)

109 FETCH PERIOD = i n t (sys . argv [3])

110 monitor (ssh , s f t p)

Listing A.7: Implementation of the consumer service.

A.3 Deployment Scripts

1 #! / usr / bin /python3

2 ”””Remote Side Standalone Launcher

3

4 This module implements the remote−s ide , standalone , launcher .

5 ”””

6 import os

7 import sys

8 import time

9 import s i g n a l

10 from s e r v e r c o n n e c t import s e r v e r c o n n e c t

11

12

13 c l a s s K i l l e r :

14 k i l l n o w = False

15 de f i n i t (s e l f) :

16 s i g n a l . s i g n a l (s i g n a l .SIGTERM, s e l f . e x i t g r a c e f u l l y)

17

18 de f e x i t g r a c e f u l l y (s e l f , signum , frame) :

19 s e l f . k i l l n o w = True

20

21

22 de f main (ssh , s f t p) :

23 ”””Main execut ion method

24

25 This method conta in s the main deployment o f UC1. I t b a s i c a l l y s t a r t s each

26 and every process , launches the benchmarking , and c l e a n s everyth ing when

27 execut ion has f i n i s h e d .

28

29 Notes

30 −−−−−
31 Al l the s l e e p s are p laced due to exper i enced e r r o r s race c o n d i t i o n s . As a

32 consequence t h e i r arguments are complete ly e m p i r i c a l .

65 A.3. Deployment Scripts

33

34 Arguments

35 −−−−−−−−−
36 ssh : paramiko . SSHClient

37 SSH Cl i en t to the remote s e r v e r .

38 s f t p : paramiko . SFTPClient

39 SFTP Cl i en t to the remote s e r v e r .

40 ”””

41 g l o b a l ALGORITHM

42 g l o b a l SGX MODE

43 g l o b a l NUM CLIENTS

44 algo name = ” . / launch−csem−{}. sh {}” . format (ALGORITHM, NUM CLIENTS)

45 i f SGX MODE:

46 s c r i p t l i s t = [” . / master . sh” , ” . / worker . sh” , ” . / worker−enc lave . sh” ,

47 ” . / dr ive r−enc lave . sh” , algo name]

48 e l s e :

49 s c r i p t l i s t = [” . / master . sh” , ” . / worker . sh” , algo name]

50 f o r s c r i p t in s c r i p t l i s t :

51 in , out , e r r = ssh . exec command (”cd sgx−spark ; {} &” . format (s c r i p t))

52 time . s l e e p (3)

53 tmp command = ” dsta t − l −−noco lo r −−noheaders 10 > cpu load . csv ”

54 , out , = ssh . exec command (”cd sgx−spark ; {} &” . format (tmp command))

55 out . r e a d l i n e s ()

56 k i l l e r = K i l l e r ()

57 whi le 1 :

58 time . s l e e p (1)

59 i f k i l l e r . k i l l n o w :

60 pr in t (” K i l l i n g Grace fu l l y ! ”)

61 break

62 f o r s c r i p t in s c r i p t l i s t :

63 , out , = ssh . exec command (” k i l l $ (pgrep −f ’{} ’) ” . format (s c r i p t))

64 out . r e a d l i n e s ()

65 , out , = ssh . exec command (” k i l l $ (pgrep −f ’ java ’) ”)

66 out . r e a d l i n e s ()

67 , out , = ssh . exec command (” k i l l $ (pgrep −f ’ d s ta t ’) ”)

68 out . r e a d l i n e s ()

69 , out , = ssh . exec command (”rm /dev/shm/∗”)

70 out . r e a d l i n e s ()

71 re turn 0

72

73

74 i f name == ” main ” :

75 ””” Entry po int f o r s tanda lone execut i on s

76

77 This entry po int conta in s the command l i n e argument par s ing .

Appendix A. Implementation Code Snippets 66

78 ”””

79 ssh , s f t p = s e r v e r c o n n e c t (”/home/ user / l o g f i l e . l og ”)

80 ALGORITHM = sys . argv [1]

81 SGX MODE = i n t (sys . argv [2])

82 NUM CLIENTS = i n t (sys . argv [3])

83 main (ssh , s f t p)

Listing A.8: Server-Side Deployment Script.

1 v e r s i on : ’3’

2

3 s e r v i c e s :

4 consumer :

5 build : . / s e r v i c e s /consumer/

6 container name : "sgx-csem-client-consumer-${CL_ID}"

7 image : consumer : l a t e s t

8 command: "${CONTAINER_RESULT_DIR} ${REMOTE_RESULT_DIR}/${CL_ID} ${

FETCH_PERIOD}"

9 user : "${myUID}:${myGID}"

10 volumes :

11 − "/home/docker/results/${CL_ID}:${CONTAINER_RESULT_DIR}"

12 # - "${LOCAL_RESULT_DIR}${CL_ID}:${CONTAINER_RESULT_DIR}"

13 producer :

14 build : . / s e r v i c e s / producer /

15 container name : "sgx-csem-client-producer-${CL_ID}"

16 image : producer : l a t e s t

17 command: "${CONTAINER_DATA_DIR} ${REMOTE_DATA_DIR}/${CL_ID} ${SEND_PERIOD}"

18 volumes :

19 − "/home/docker/data/${CL_ID}:${CONTAINER_DATA_DIR}"

20 #- "${LOCAL_DATA_DIR}${CL_ID}:${CONTAINER_DATA_DIR}"

21 mqtt−sub :

22 build : . / s e r v i c e s / mqtt sub/

23 container name : "sgx-csem-client-mqtt-sub-${CL_ID}"

24 image : mqtt−sub : l a t e s t

25 network mode : "sgx-csem-net"

26 user : "${myUID}:${myGID}"

27 depends on :

28 − "mqtt"

29 volumes :

30 − "/home/docker/data/${CL_ID}:${CONTAINER_DATA_DIR}"

31 #- "${LOCAL_DATA_DIR}${CL_ID}:${CONTAINER_DATA_DIR}"

32 command: "${FILE_LINES} ${CL_ID} ${CONTAINER_DATA_DIR}"

33 fake−s enso r :

34 build : . / s e r v i c e s / fake−s enso r /

67 A.3. Deployment Scripts

35 container name : "sgx-csem-client-fake-sensor-${CL_ID}"

36 image : fake−s enso r : l a t e s t

37 network mode : "sgx-csem-net"

38 command: "${SAMPLE_RATE} ${CL_ID}"

39 depends on :

40 − "mqtt"

41 mqtt :

42 image : e c l i p s e−mosquitto

43 container name : "sgx-csem-mqtt-${CL_ID}"

44 network mode : "sgx-csem-net"

45 l o gg ing :

46 d r i v e r : none

Listing A.9: Client Docker Compose Script.

1 #! / usr / bin /python3

2 ””” Benchmarking and Evaluat ion launcher .

3

4 This module i n c l u d e s a l l the d i f e r e n t benchmarking s c e n a r i o n s cons ide r ed in the

5 p r o j e c t . I t a l s o deploys a l l o f them in a s e q u e n t i a l f a s h i o n .

6 ”””

7 import i t e r t o o l s

8 import sys

9 import os

10 import time

11 import subproces s

12 from datet ime import datet ime

13 import r e q u e s t s

14 import g lob

15 import s h u t i l

16 from s e r v e r c o n n e c t import s e r v e r c o n n e c t

17

18

19 de f que ry ba t ch proc e s s i ng (f i l e d i r) :

20 ”””Query Spark ’ s REST API

21 This method q u e r i e s sparks API f o r the batch p r o c e s s i n g time . I t f i r s t s

22 l aunches a port forwarding daemon in order to be ab le to perform the

23 r eque s t and then q u e r i e s the in fo rmat ion . Note that t h i s i s done only

24 once at the end o f the execut ion (r i g h t be f o r e k i l l i n g i t) .

25 ”””

26 proc = subproces s . Popen (”python3 port fo rward . py” . s p l i t (” ”))

27 time . s l e e p (2)

28 app id = r e q u e s t s . get (’ http :// l o c a l h o s t :4040/ api /v1/ a p p l i c a t i o n s / ’) . j s on ()

29 app id = app id [0] [’ id ’]

Appendix A. Implementation Code Snippets 68

30 req = ’ http :// l o c a l h o s t :4040/ api /v1/ a p p l i c a t i o n s /{}/ jobs / ’ . format (app id)

31 r = r e q u e s t s . get (req) . j son ()

32 t ime format = ”%Y−%m−%dT%H:%M:%S.% f ”

33 t imes = [datet ime . s t rpt ime (r [i] [’ completionTime ’] [: − 3] ,

34 t ime format) . timestamp () −
35 datet ime . s t rpt ime (r [i] [’ submissionTime ’] [: − 3] ,

36 t ime format) . timestamp ()

37 f o r i in r eve r s ed (range (l en (r))) i f ’ completionTime ’ in r [i]]

38 proc . k i l l ()

39 f i l ename = f i l e d i r + ” b a t c h p r o c e s s i n g t i m e s . csv ”

40 with open (f i l ename , ”w+”) as f :

41 f o r num, va l in enumerate (t imes) :

42 i f num == 0 :

43 f . wr i t e (”{} {}” . format (num, va l))

44 e l s e :

45 f . wr i t e (”\n{} {}” . format (num, va l))

46 re turn 0

47

48

49 de f query energy (f i l e d i r , e l aps ed t ime = 0 , e n e r g y i n i = 0) :

50 ””” Query UniNe ’ s Powe Control System

51

52 The idea i s to compute consumed energy vs runtime so t h i s are the va lue s

53 that we w i l l pack . For f u r t h e r r e f e r e n c e below are the va lue s to query

54 f o r other th ing s .

55 pdu val | v a r i a b l e measured

56 1 | Voltage AC rms (V)

57 2 | Current AC rms (A)

58 8 | Total energy a c t i v e (kWh)

59 10 | Rese t tab l e energy (?) a c t i v e (kWh)

60 DISCLAIMER: The cur rent r e s u l t i s in kWh!

61 ”””

62 port fw = ”python3 port fo rward . py”

63 port fw += ” −lp 8080 −ru powercontro l . maas −rp 80 −rh hoe rn l i −2”

64 proc = subproces s . Popen (”{}” . format (port fw) . s p l i t (” ”))

65 time . s l e e p (2)

66 req = ’ http :// l o c a l h o s t :8080/ s t a t u s j s n . j s ? components=16384 ’

67 # In t h i s case we choose va lue 8 −> Energy

68 r = r e q u e s t s . get (req) . j son () [’ s e n s o r v a l u e s ’] [1] [’ va lue s ’] [3] [8] [’ v ’]

69 # Obtain teh s h i t

70 # subproces s . c a l l (” k i l l $ (pgrep −f ’{} ’) ” . format (port fw) , s h e l l=True)

71 proc . k i l l ()

72 i f e n e r g y i n i :

73 f i l ename = f i l e d i r + ” energy consumption . csv ”

74 with open (f i l ename , ”w+”) as f :

69 A.3. Deployment Scripts

75 f . wr i t e (”{} {}\n” . format (e lapsed t ime , f l o a t (r) − e n e r g y i n i))

76 e l s e :

77 re turn f l o a t (r)

78

79

80 de f query memory (f i l e d i r) :

81 ssh , s f t p = s e r v e r c o n n e c t (” . / l o g f i l e . l og ”)

82 l o c a l f i l e = f i l e d i r + ” cpu load . csv ”

83 r e m o t e f i l e = ”/home/ubuntu/sgx−spark / cpu load . csv ”

84 s f t p . get (r e m o t e f i l e , l o c a l f i l e)

85 s f t p . remove (r e m o t e f i l e)

86 ssh . c l o s e ()

87 s f t p . c l o s e ()

88

89

90 # TODO: This w i l l ev en tua l l y have to change when we c o n t a i n e r i z e the c l i e n t

91 de f q u e r y a c t i v e c l i e n t s (f i l e d i r , t o t a l c l i e n t s) :

92 ssh , s f t p = s e r v e r c o n n e c t (” . / l o g f i l e . l og ”)

93 f i l ename = f i l e d i r + ” c l i e n t s . csv ”

94 r emote d i r = ”/home/ubuntu/sgx−spark /csem/ s r c /main/ r e s o u r c e s / csv /”

95 a c t i v e c l i e n t s = len (s e t ([l . s p l i t (’ ’) [0] f o r l in s f t p . l i s t d i r (r emote d i r)]))

96 with open (f i l ename , ”w+”) as f :

97 f . wr i t e (” Act ive c l i e n t s :\ t {}\n” . format (a c t i v e c l i e n t s))

98 f . wr i t e (” Total c l i e n t s :\ t {}\n” . format (t o t a l c l i e n t s))

99 ssh . c l o s e ()

100 s f t p . c l o s e ()

101

102

103 de f main () :

104 ””” Launcher .

105

106 This method d e f i n e s a l l the d i f e r e n t benchmarking environments , the

107 parameters they take and deploys each and every execut ion .

108 ”””

109 # General v a r i a b l e s

110 #n v e r s i o n s = 1

111 #sr = [1]

112 #batch number = 200

113 #batch durat ion = 10

114

115 # Evaluat ion Var iab l e s

116 # Test :

117 #n c l i e n t s = [1 0 0]

118 #algor i thms = [” sdnn ”]

119 #mode = [1]

Appendix A. Implementation Code Snippets 70

120 # Cl i en t S c a l a b i l i t y :

121 #n c l i e n t s = [1 , 50 , 250 , 500]

122 #algor i thms = [” sdnn ” , ” i d e n t i t y ” , ”hrvbands ”]

123 #mode = [1 , 0]

124 # Maximal Throughput Many F i l e s

125 n v e r s i o n s = 1

126 s r = [100 , 200 , 300 , 400 , 500]

127 batch number = 20

128 batch durat ion = 10

129 n c l i e n t s = [1]

130 a lgor i thms = [”sdnn”]

131 mode = [0]

132

133 f o r elem in i t e r t o o l s . product (∗ [a lgor i thms , mode , s r]) :

134 f o r v e r s i o n in range (n v e r s i o n s) :

135 f o r c l i e n t in n c l i e n t s :

136 pr in t (” S ta r t i ng execut ion with the f o l l o w i n g parameters : ”)

137 pr in t (”\ t − Repl i ca : {} o f {}” . format (v e r s i o n + 1 , n v e r s i o n s))

138 pr in t (”\ t − Number o f c l i e n t s : {}” . format (c l i e n t))

139 pr in t (”\ t − Algorithm : {}” . format (elem [0]))

140 pr in t (”\ t − SGX Enabled : {}” . format (elem [1]))

141 pr in t (”\ t − Sample Rate : {}” . format (elem [2]))

142 # The dynamic f i l e s i z e i s s e t so that one f i l e i s generated

143 # roughly every 10 seconds , so s imply sample rate ∗ 10 l i n e s .

144 f l = elem [2] ∗ 10

145 subproces s . c a l l (” . / deploy−s i n g l e−eva lua t i on . sh {} {} {} {} {}” .

format (

146 elem [0] , elem [1] , elem [2] , c l i e n t , f l) . s p l i t (” ”))

147 tmp = ”/{} n c l i {} s g x {} s r {} v {}/” . format (elem [0] , c l i e n t ,

148 elem [1] , elem [2] ,

149 ve r s i on)

150 f i l e d i r = OUTPUT DIR + tmp

151 os . makedirs (f i l e d i r , e x i s t o k=True)

152 t ry :

153 e n e r g y i n i = query energy (f i l e d i r)

154 e l apsed t ime = batch number∗ batch durat ion

155 time . s l e e p (e l apsed t ime)

156 que ry ba t ch proc e s s i ng (f i l e d i r)

157 query energy (f i l e d i r , e lapsed t ime , e n e r g y i n i)

158 query memory (f i l e d i r)

159 q u e r y a c t i v e c l i e n t s (f i l e d i r , c l i e n t)

160 except Exception as e :

161 pr in t (”An except ion occured during the data grepping ! ”)

162 pr in t (e)

163 f i n a l l y :

71 A.3. Deployment Scripts

164 subproces s . c a l l (” . / k i l l −execut ion . sh”)

165

166

167 i f name == ” main ” :

168 OUTPUT DIR = sys . argv [1]

169 main ()

Listing A.10: Benchmarking and Experiment Deployment Script.

Appendix A. Implementation Code Snippets 72

73

Appendix B

Evaluation Code Snippets

1 #! / usr / bin /python3

2 ”””SSH Tunnel Daemon

3

4 This module s t a r t s a daemon that e s t a b l i s h e s a SSH tunne l from the l o c a l box

5 to the remote one . This i s done to be ab le to query Spark ’ s UI . I t i s

6 e s s e n t i a l l y a l o c a l port forwarding .

7 ”””

8 import os

9 import sys

10 import argparse

11 import socke t

12 from paramiko import SSHClient , SSHConfig , ProxyCommand

13 from paramiko . u t i l import l o g t o f i l e

14 from forward import fo rward tunne l

15

16

17 de f run (∗∗ kwargs) :

18 ”””Main method

19

20 S t a r t s a subproces s that SSH ’ s to the remote host and e s t a b l i s h e s the

21 tunne l / port forwarding . In short , you w i l l s e e at l o c a l h o s t : l o c a l p o r t

22 the contents found at remote ur l : remote port as seen by remote host .

23

24 Att r ibut e s

25 −−−−−−−−−−
26 l o c a l p o r t : i n t

27 Local port towards which the connect ion i s forwarded .

28 r emote ur l : s t r

29 Remote u r l you are a c c e s s i n g from the remote host .

30 remote port : i n t

31 Port you w i l l be a c c e s s i n g the remote u r l through .

32 remote host : s t r

Appendix B. Evaluation Code Snippets 74

33 Host through which you are e s t a b l i s h i n g the tunne l . Note that t h i s

34 host should appear in your . ssh / c o n f i g and , due to p a r t i c u l a r i t i e s

35 o f the implementation , i t must in c lude a ProxyCommand to be used .

36 ”””

37 ssh = SSHClient ()

38 s s h c o n f i g = SSHConfig ()

39 ssh . l oad sy s t em hos t key s ()

40 with open (os . path . expanduser (” ˜/ . ssh / c o n f i g ”)) as f :

41 s s h c o n f i g . parse (f)

42 t ry :

43 d e t a i l s = s s h c o n f i g . lookup (kwargs [’ remote host ’])

44 except Exception as e :

45 l o g g e r . e r r o r (”The remote host {} i s not l i s t e d in your . ssh / c o n f i g ” +

46 ” f i l e ! ” . format (kwargs [’ remote host ’]))

47 l o g t o f i l e (” l o g f i l e . l og ”)

48 ssh . connect (hostname=d e t a i l s [’ hostname ’] , username=d e t a i l s [’ use r ’] ,

49 sock=ProxyCommand(d e t a i l s [’ proxycommand ’]))

50 f o rward tunne l (kwargs [’ l o c a l p o r t ’] , kwargs [’ r emote ur l ’] ,

51 kwargs [’ rem port ’] , s sh . g e t t r a n s p o r t ())

52

53

54 i f name == ” main ” :

55 par s e r = argparse . ArgumentParser ()

56 par s e r . add argument (”−lp ” , ”−− l o c a l p o r t ” , he lp=” Local forwarded port ” ,

57 type=int , nargs=’ ? ’ , d e f a u l t =4040 , const =4040)

58 par s e r . add argument (”−ru” , ”−−r emote ur l ” , he lp=”End URL (from remote) ” ,

59 type=str , nargs=’ ? ’ , d e f a u l t=’ l o c a l h o s t ’ ,

60 const=’ l o c a l h o s t ’)

61 par s e r . add argument (”−rp” , ”−−rem port ” , he lp=”Remote used port ” , type=int ,

62 nargs=’ ? ’ , d e f a u l t =4040 , const =4040)

63 par s e r . add argument (”−rh” , ”−−remote host ” , he lp=”Remote host ” , type=str ,

64 nargs=’ ? ’ , d e f a u l t=” e i g e r −9” , const=” e i g e r −9”)

65 args = par s e r . p a r s e a r g s ()

66 run (∗∗ vars (args))

Listing B.1: Python Script to Set Up a Port Forwarding Daemon.

1 #! / usr / bin /env python

2

3 # Copyright (C) 2003−2007 Robey Pointer <robeypointer@gmai l . com>

4 #

5 # This f i l e i s part o f paramiko .

6 #

7 # Paramiko i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or modify i t under the

75

8 # terms o f the GNU Lesse r General Publ ic L i cense as pub l i shed by the Free

9 # Software Foundation ; e i t h e r v e r s i o n 2 .1 o f the License , or (at your opt ion)

10 # any l a t e r v e r s i on .

11 #

12 # Paramiko i s d i s t r i b u t e d in the hope that i t w i l l be use fu l , but WITHOUT ANY

13 # WARRANTY; without even the impl i ed warranty o f MERCHANTABILITY or FITNESS FOR

14 # A PARTICULAR PURPOSE. See the GNU Lesse r General Publ ic L i cense f o r more

15 # d e t a i l s .

16 #

17 # You should have r e c e i v e d a copy o f the GNU Lesse r General Publ ic L i cense

18 # along with Paramiko ; i f not , wr i t e to the Free Software Foundation , Inc . ,

19 # 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA.

20

21 ”””

22 Sample s c r i p t showing how to do l o c a l port forwarding over paramiko .

23

24 This s c r i p t connects to the reques ted SSH s e r v e r and s e t s up l o c a l port

25 forward ing (the openssh −L opt ion) from a l o c a l port through a tunneled

26 connect ion to a d e s t i n a t i o n reachab l e from the SSH s e r v e r machine .

27 ”””

28

29 import os

30 import socke t

31 import s e l e c t

32

33 t ry :

34 import SocketServer

35 except ImportError :

36 import s o c k e t s e r v e r as SocketServer

37

38 import sys

39 from optparse import OptionParser

40

41 import paramiko

42

43

44 SSH PORT = 22

45 DEFAULT PORT = 4000

46

47

48 c l a s s ForwardServer (SocketServer . ThreadingTCPServer) :

49 daemon threads = True

50 a l l o w r e u s e a d d r e s s = True

51

52

Appendix B. Evaluation Code Snippets 76

53 c l a s s Handler (SocketServer . BaseRequestHandler) :

54 de f handle (s e l f) :

55 t ry :

56 chan = s e l f . s s h t r a n s p o r t . open channel (

57 ” d i r e c t−t cp ip ” ,

58 (s e l f . cha in host , s e l f . cha in por t) ,

59 s e l f . r eque s t . getpeername () ,

60)

61 except Exception as e :

62 re turn

63 i f chan i s None :

64 re turn

65

66 whi le True :

67 r , w, x = s e l e c t . s e l e c t ([s e l f . request , chan] , [] , [])

68 i f s e l f . r eque s t in r :

69 data = s e l f . r eque s t . recv (1024)

70 i f l en (data) == 0 :

71 break

72 chan . send (data)

73 i f chan in r :

74 data = chan . recv (1024)

75 i f l en (data) == 0 :

76 break

77 s e l f . r eque s t . send (data)

78

79 peername = s e l f . r eque s t . getpeername ()

80 chan . c l o s e ()

81 s e l f . r eque s t . c l o s e ()

82

83

84 de f fo rward tunne l (l o c a l p o r t , remote host , remote port , t r an spo r t) :

85 # t h i s i s a l i t t l e convoluted , but l e t s me c o n f i g u r e th ing s f o r the Handler

86 # obj e c t . (SocketServer doesn ’ t g ive Handlers any way to a c c e s s the outer

87 # s e r v e r normally .)

88 c l a s s SubHander (Handler) :

89 cha in hos t = remote host

90 cha in por t = remote port

91 s s h t r a n s p o r t = t ranspor t

92

93 ForwardServer ((”” , l o c a l p o r t) , SubHander) . s e r v e f o r e v e r ()

Listing B.2: Python Script to Set Up a SSH Tunnel.

	Note from the Author
	Declaration of Authorship
	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	List of Listings
	List of Acronyms
	Introduction
	Motivation
	Contributions
	Document Structure

	Background
	Technical Background
	Trusted Execution Environments and Intel SGX
	Spark and Spark Streaming
	SGX-LKL and SGX-Spark

	Cardiac Analysis

	Related Work
	Stream Processing Engines
	Privacy-Preserving Computation
	Cardiac Monitoring Systems

	Architecture
	Server-Side
	Clients
	Threat Model
	Known Vulnerabilities

	Implementation
	Server Implementation
	Client Implementation
	Deployment
	Server Execution Deployment
	Client Execution Deployment
	Deployment

	Evaluation
	Hardware Settings
	Server
	Client

	Experimental Configuration
	Analyzed Metrics
	Workload
	Results
	Batch Execution
	Stream Execution

	Future Work
	Conclusions
	Appendix Implementation Code Snippets
	Server-Side Algorithms
	Client-Side Services Source Code
	Deployment Scripts

	Appendix Evaluation Code Snippets

